diff --git a/README.md b/README.md index d19ccba..0b1efcc 100644 --- a/README.md +++ b/README.md @@ -21,6 +21,7 @@ CCS 2015 - Model Inversion Attacks that Exploit Confidence Information and Basic [[code1]](http://www.cs.cmu.edu/~mfredrik/mi-2016.zip) [[code2]](https://github.com/yashkant/Model-Inversion-Attack) [[code3]](https://github.com/zhangzp9970/MIA) +[[code4]](https://github.com/sarahsimionescu/simple-model-inversion) CSF 2016 - A Methodology for Formalizing Model-Inversion Attacks. [[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7536387&casa_token=ClIVAMYo6dcAAAAA:u75HHyFHj5lBRec9h5SqOZyAsL2dICcWIuQPCj6ltk8McREFCaM4ex42mv3S-oNPiGJLDfUqg0qL) @@ -54,6 +55,10 @@ ICCV 2021 - Knowledge-Enriched Distributional Model Inversion Attacks. AAAI 2021 - Improving Robustness to Model Inversion Attacks via Mutual Information Regularization. [[paper]](https://arxiv.org/pdf/2009.05241.pdf) +ICML 2022 - Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks. +[[paper]](https://arxiv.org/pdf/2201.12179.pdf) +[[code]](https://github.com/LukasStruppek/Plug-and-Play-Attacks) + CVPR 2022 - Label-Only Model Inversion Attacks via Boundary Repulsion. [[paper]](https://arxiv.org/pdf/2203.01925.pdf) [[code]](https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion) @@ -66,9 +71,10 @@ USENIX Security 2022 - ML-DOCTOR: Holistic Risk Assessment of Inference Attacks [[paper]](https://www.usenix.org/system/files/sec22summer_liu-yugeng.pdf) [[code]](https://github.com/liuyugeng/ML-Doctor) -Arxiv 2022 - Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks. -[[paper]](https://arxiv.org/pdf/2201.12179.pdf) -[[code]](https://github.com/LukasStruppek/Plug-and-Play-Attacks) +IEEE 2022 - An Approximate Memory based Defense against Model Inversion Attacks to Neural Networks. +[[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9792582&casa_token=ymT57RhNhGEAAAAA:WsQHMpv77-4uyIp7l-p4hc7_Qmxvn5TeNpS5F7LHBFHyLay2O8Pe5eWqsKN2fu56v98NZsRrqeit) +[[code]](https://github.com/katekemu/model_inversion_defense) + ### Graph Learning @@ -89,6 +95,10 @@ USENIX Security 2022 - Inference Attacks Against Graph Neural Networks [[paper]](https://www.usenix.org/system/files/sec22summer_zhang-zhikun.pdf) [[code]](https://github.com/Zhangzhk0819/GNN-Embedding-Leaks) +IEEE S&P 2022 - Model Stealing Attacks Against Inductive Graph Neural Networks. +[[paper]](https://arxiv.org/pdf/2112.08331.pdf) +[[code]](https://github.com/xinleihe/GNNStealing) + Arxiv 2022 - DIFFERENTIALLY PRIVATE GRAPH CLASSIFICATION WITH GNNS. [[paper]](https://arxiv.org/pdf/2202.02575.pdf) @@ -104,6 +114,14 @@ Arxiv 2022 - Degree-Preserving Randomized Response for Graph Neural Networks und Arxiv 2022 - Private Graph Extraction via Feature Explanations. [[paper]](https://arxiv.org/pdf/2206.14724.pdf) +### Tools +[AIJack](https://github.com/Koukyosyumei/AIJack): Implementation of algorithms for AI security. + +[Privacy-Attacks-in-Machine-Learning](https://github.com/shrebox/Privacy-Attacks-in-Machine-Learning): Membership Inference, Attribute Inference and Model Inversion attacks implemented using PyTorch. + +[ml-attack-framework](https://github.com/Pilladian/ml-attack-framework): Universität des Saarlandes - Privacy Enhancing Technologies 2021 - Semester Project. + + ### Others 2021 - ML and DP. [[slides]](https://www.cs.toronto.edu/~toni/Courses/Fairness/Lectures/ML-and-DP-v2.pdf)