From 75544f79a220d52d11d30b657c474318164bd385 Mon Sep 17 00:00:00 2001 From: Zhanke Zhou <45969108+AndrewZhou924@users.noreply.github.com> Date: Thu, 21 Jul 2022 22:49:09 +0800 Subject: [PATCH] Update README.md --- README.md | 61 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 60 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 466009b..5bec057 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,9 @@ # Awesome-model-inversion-attack ### Survey +Arxiv 2021 - A Survey of Privacy Attacks in Machine Learning. +[[paper]](https://arxiv.org/pdf/2007.07646.pdf) + Arxiv 2022 - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability. [[paper]](https://arxiv.org/pdf/2204.08570.pdf) @@ -11,15 +14,71 @@ Arxiv 2022 - A Survey of Trustworthy Graph Learning: Reliability, Explainability [[paper]](https://arxiv.org/pdf/2205.10014.pdf) +### Computer Vision + +CCS 2015 - Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures. +[[paper]](https://dl.acm.org/doi/pdf/10.1145/2810103.2813677) +[[code1]](http://www.cs.cmu.edu/~mfredrik/mi-2016.zip) +[[code2]](https://github.com/yashkant/Model-Inversion-Attack) +[[code3]](https://github.com/zhangzp9970/MIA) + +CSF 2016 - A Methodology for Formalizing Model-Inversion Attacks. +[[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7536387&casa_token=ClIVAMYo6dcAAAAA:u75HHyFHj5lBRec9h5SqOZyAsL2dICcWIuQPCj6ltk8McREFCaM4ex42mv3S-oNPiGJLDfUqg0qL) + +2020 - Neural Network Inversion in Adversarial Setting via Background Knowledge Alignment. +[[paper]](https://dl.acm.org/doi/pdf/10.1145/3319535.3354261?casa_token=J81Ps-ZWXHkAAAAA:FYnXo7DQoHpdhqns8x2TclKFeHpAQlXVxMBW2hTrhJ5c20XKdsounqdT1Viw1g6Xsu9FtKj85elxQaA) +[[code]](https://github.com/zhangzp9970/TB-MIA) + +CVPR 2020 - The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks. +[[paper]](https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_The_Secret_Revealer_Generative_Model-Inversion_Attacks_Against_Deep_Neural_Networks_CVPR_2020_paper.pdf) +[[code]](https://github.com/AI-secure/GMI-Attack) + +NeurIPS 2021 - Variational Model Inversion Attacks. +[[paper]](https://proceedings.neurips.cc/paper/2021/file/50a074e6a8da4662ae0a29edde722179-Paper.pdf) +[[code]](https://github.com/wangkua1/vmi) + +ICCV 2021 - Exploiting Explanations for Model Inversion Attacks. +[[paper]](https://openaccess.thecvf.com/content/ICCV2021/papers/Zhao_Exploiting_Explanations_for_Model_Inversion_Attacks_ICCV_2021_paper.pdf) + +ICCV 2021 - Knowledge-Enriched Distributional Model Inversion Attacks. +[[paper]](https://arxiv.org/pdf/2010.04092.pdf) +[[code]](https://github.com/SCccc21/Knowledge-Enriched-DMI) + +AAAI 2021 - Improving Robustness to Model Inversion Attacks via Mutual Information Regularization. +[[paper]](https://arxiv.org/pdf/2009.05241.pdf) + +CVPR 2022 - Label-Only Model Inversion Attacks via Boundary Repulsion. +[[paper]](https://arxiv.org/pdf/2203.01925.pdf) +[[code]]() + +KDD 2022 - Bilateral Dependency Optimization: Defending Against Model-inversion Attacks. +[[paper]](https://arxiv.org/pdf/2206.05483.pdf) +[[code]](https://github.com/xpeng9719/Defend_MI) + +USENIX Security 2022 - ML-DOCTOR: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models. +[[paper]](https://www.usenix.org/system/files/sec22summer_liu-yugeng.pdf) +[[code]](https://github.com/liuyugeng/ML-Doctor) + + ### Graph Learning +USENIX Security 2020 - Stealing Links from Graph Neural Networks. +[[paper]](https://www.usenix.org/system/files/sec21-he-xinlei.pdf) + IJCAI 2021 - GraphMI: Extracting Private Graph Data from Graph Neural Networks. -[[paper]](https://arxiv.org/abs/2106.02820) +[[paper]](https://arxiv.org/pdf/2106.02820) [[code]](https://github.com/zaixizhang/GraphMI) +Arxiv 2021 - Node-Level Membership Inference Attacks Against Graph Neural Networks. +[[paper]](https://arxiv.org/pdf/2102.05429.pdf) + WWW 2022 - Learning Privacy-Preserving Graph Convolutional Network with Partially Observed Sensitive Attributes. [[paper]](https://dl.acm.org/doi/pdf/10.1145/3485447.3511975?casa_token=Xsle4t9cLdcAAAAA:Gmij-qWaTJ2esGVa-yzKNHqVOMzYyaIgdNcgGmEzHrVyMdwwf9idn3qBjkhCcQeRTvbAkaT6OxiwXsk) +USENIX Security 2022 - Inference Attacks Against Graph Neural Networks +[[paper]](https://www.usenix.org/system/files/sec22summer_zhang-zhikun.pdf) +[[code]](https://github.com/Zhangzhk0819/GNN-Embedding-Leaks) + Arxiv 2022 - DIFFERENTIALLY PRIVATE GRAPH CLASSIFICATION WITH GNNS. [[paper]](https://arxiv.org/pdf/2202.02575.pdf)