#!/usr/bin/env python3 """ Web Pentest Agent - Specialized agent for web application penetration testing. """ import json import logging from typing import Dict, List from core.llm_manager import LLMManager from tools.web_pentest import WebRecon # Import the moved WebRecon tool logger = logging.getLogger(__name__) class WebPentestAgent: """Agent responsible for comprehensive web application penetration testing.""" def __init__(self, config: Dict): """Initializes the WebPentestAgent.""" self.config = config self.llm = LLMManager(config) self.web_recon = WebRecon(config) # Placeholder for web exploitation tools if they become separate classes # self.web_exploiter = WebExploiter(config) logger.info("WebPentestAgent initialized") def execute(self, target: str, context: Dict) -> Dict: """Executes the web application penetration testing phase.""" logger.info(f"Starting web pentest on {target}") results = { "target": target, "status": "running", "web_recon_results": {}, "vulnerability_analysis": [], "exploitation_attempts": [], "ai_analysis": {} } try: # Phase 1: Web Reconnaissance logger.info("Phase 1: Web Reconnaissance (WebPentestAgent)") web_recon_output = self.web_recon.analyze(target) results["web_recon_results"] = web_recon_output # Phase 2: Vulnerability Analysis (AI-powered) logger.info("Phase 2: AI-powered Vulnerability Analysis") # This part will be improved later with more detailed vulnerability detection in WebRecon # For now, it will look for findings reported by WebRecon potential_vulnerabilities = self._identify_potential_web_vulnerabilities(web_recon_output) if potential_vulnerabilities: results["vulnerability_analysis"] = potential_vulnerabilities ai_vulnerability_analysis = self._ai_analyze_web_vulnerabilities(potential_vulnerabilities, target) results["ai_analysis"]["vulnerability_insights"] = ai_vulnerability_analysis else: logger.info("No immediate web vulnerabilities identified by WebRecon.") # Phase 3: Web Exploitation (Placeholder for now) # This will integrate with exploitation tools later. results["status"] = "completed" logger.info("Web pentest phase completed") except Exception as e: logger.error(f"Error during web pentest: {e}") results["status"] = "error" results["error"] = str(e) return results def _identify_potential_web_vulnerabilities(self, web_recon_output: Dict) -> List[Dict]: """ Identifies potential web vulnerabilities based on WebRecon output. This is a placeholder and will be enhanced as WebRecon improves. """ vulnerabilities = [] if "vulnerabilities" in web_recon_output: vulnerabilities.extend(web_recon_output["vulnerabilities"]) return vulnerabilities def _ai_analyze_web_vulnerabilities(self, vulnerabilities: List[Dict], target: str) -> Dict: """Uses AI to analyze identified web vulnerabilities.""" prompt = self.llm.get_prompt( "web_recon", "ai_analysis_user", default=f""" Analyze the following potential web vulnerabilities identified on {target} and provide insights: Vulnerabilities: {json.dumps(vulnerabilities, indent=2)} Provide: 1. Prioritized list of vulnerabilities 2. Recommended exploitation steps for each (if applicable) 3. Potential impact 4. Remediation suggestions Response in JSON format with actionable recommendations. """ ) system_prompt = self.llm.get_prompt( "web_recon", "ai_analysis_system", default="""You are an expert web penetration tester and security analyst. Provide precise analysis of web vulnerabilities and practical advice for exploitation and remediation.""" ) try: # Format the user prompt with recon_data formatted_prompt = prompt.format( target=target, vulnerabilities_json=json.dumps(vulnerabilities, indent=2) ) response = self.llm.generate(formatted_prompt, system_prompt) return json.loads(response) except Exception as e: logger.error(f"AI web vulnerability analysis error: {e}") return {"error": str(e), "raw_response": response if 'response' in locals() else None}