#!/usr/bin/env python3 """ Example Custom Agent for NeuroSploitv2 This demonstrates how to create custom agents for specific tasks """ import logging from typing import Dict from core.llm_manager import LLMManager logger = logging.getLogger(__name__) class CustomAgent: """Example custom agent - Web API Security Scanner""" def __init__(self, config: Dict): """Initialize custom agent""" self.config = config self.llm = LLMManager(config) self.name = "WebAPIScanner" logger.info(f"{self.name} initialized") def execute(self, target: str, context: Dict) -> Dict: """Execute custom agent logic""" logger.info(f"Running {self.name} on {target}") results = { "agent": self.name, "target": target, "status": "running", "findings": [] } try: # Your custom logic here # Example: API endpoint testing results["findings"] = self._scan_api_endpoints(target) # Use AI for analysis ai_analysis = self._ai_analyze(results["findings"]) results["ai_analysis"] = ai_analysis results["status"] = "completed" except Exception as e: logger.error(f"Error in {self.name}: {e}") results["status"] = "error" results["error"] = str(e) return results def _scan_api_endpoints(self, target: str) -> list: """Custom scanning logic""" # Implement your custom scanning logic return [ {"endpoint": "/api/users", "method": "GET", "auth": "required"}, {"endpoint": "/api/admin", "method": "POST", "auth": "weak"} ] def _ai_analyze(self, findings: list) -> Dict: """Use AI to analyze findings""" prompt = f""" Analyze the following API security findings: {findings} Provide: 1. Security assessment 2. Risk prioritization 3. Exploitation recommendations 4. Remediation advice Response in JSON format. """ system_prompt = "You are an API security expert." try: response = self.llm.generate(prompt, system_prompt) return {"analysis": response} except Exception as e: return {"error": str(e)}