Files
NeuroSploit/custom_agents/example_agent.py
2025-12-18 18:18:29 -03:00

84 lines
2.3 KiB
Python

#!/usr/bin/env python3
"""
Example Custom Agent for NeuroSploitv2
This demonstrates how to create custom agents for specific tasks
"""
import logging
from typing import Dict
from core.llm_manager import LLMManager
logger = logging.getLogger(__name__)
class CustomAgent:
"""Example custom agent - Web API Security Scanner"""
def __init__(self, config: Dict):
"""Initialize custom agent"""
self.config = config
self.llm = LLMManager(config)
self.name = "WebAPIScanner"
logger.info(f"{self.name} initialized")
def execute(self, target: str, context: Dict) -> Dict:
"""Execute custom agent logic"""
logger.info(f"Running {self.name} on {target}")
results = {
"agent": self.name,
"target": target,
"status": "running",
"findings": []
}
try:
# Your custom logic here
# Example: API endpoint testing
results["findings"] = self._scan_api_endpoints(target)
# Use AI for analysis
ai_analysis = self._ai_analyze(results["findings"])
results["ai_analysis"] = ai_analysis
results["status"] = "completed"
except Exception as e:
logger.error(f"Error in {self.name}: {e}")
results["status"] = "error"
results["error"] = str(e)
return results
def _scan_api_endpoints(self, target: str) -> list:
"""Custom scanning logic"""
# Implement your custom scanning logic
return [
{"endpoint": "/api/users", "method": "GET", "auth": "required"},
{"endpoint": "/api/admin", "method": "POST", "auth": "weak"}
]
def _ai_analyze(self, findings: list) -> Dict:
"""Use AI to analyze findings"""
prompt = f"""
Analyze the following API security findings:
{findings}
Provide:
1. Security assessment
2. Risk prioritization
3. Exploitation recommendations
4. Remediation advice
Response in JSON format.
"""
system_prompt = "You are an API security expert."
try:
response = self.llm.generate(prompt, system_prompt)
return {"analysis": response}
except Exception as e:
return {"error": str(e)}