Files
NeuroSploit/neurosploit.py
2026-01-14 15:58:19 -03:00

1477 lines
61 KiB
Python

#!/usr/bin/env python3
"""
NeuroSploitv2 - AI-Powered Penetration Testing Framework
Author: Security Research Team
License: MIT
Version: 2.0.0
"""
import os
import sys
import argparse
import json
import re
from pathlib import Path
from typing import Dict, List, Optional
import logging
from datetime import datetime
import readline
import mistune
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('logs/neurosploit.log'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
from core.llm_manager import LLMManager
from core.tool_installer import ToolInstaller, run_installer_menu, PENTEST_TOOLS
from core.pentest_executor import PentestExecutor
from core.report_generator import ReportGenerator
from core.context_builder import ReconContextBuilder
from agents.base_agent import BaseAgent
from tools.recon.recon_tools import FullReconRunner
class Completer:
def __init__(self, neurosploit):
self.neurosploit = neurosploit
self.commands = [
"help", "run_agent", "config", "list_roles", "list_profiles",
"set_profile", "set_agent", "discover_ollama", "install_tools",
"scan", "quick_scan", "recon", "full_recon", "check_tools",
"experience", "wizard", "analyze", "exit", "quit"
]
self.agent_roles = list(self.neurosploit.config.get('agent_roles', {}).keys())
self.llm_profiles = list(self.neurosploit.config.get('llm', {}).get('profiles', {}).keys())
def complete(self, text, state):
line = readline.get_line_buffer()
parts = line.split()
options = []
if state == 0:
if not parts or (len(parts) == 1 and not line.endswith(' ')):
options = [c + ' ' for c in self.commands if c.startswith(text)]
elif len(parts) > 0:
if parts[0] == 'run_agent':
if len(parts) == 1 and line.endswith(' '):
options = [a + ' ' for a in self.agent_roles]
elif len(parts) == 2 and not line.endswith(' '):
options = [a + ' ' for a in self.agent_roles if a.startswith(parts[1])]
elif parts[0] == 'set_agent':
if len(parts) == 1 and line.endswith(' '):
options = [a + ' ' for a in self.agent_roles]
elif len(parts) == 2 and not line.endswith(' '):
options = [a + ' ' for a in self.agent_roles if a.startswith(parts[1])]
elif parts[0] == 'set_profile':
if len(parts) == 1 and line.endswith(' '):
options = [p + ' ' for p in self.llm_profiles]
elif len(parts) == 2 and not line.endswith(' '):
options = [p + ' ' for p in self.llm_profiles if p.startswith(parts[1])]
if state < len(options):
return options[state]
else:
return None
class NeuroSploitv2:
"""Main framework class for NeuroSploitv2"""
def __init__(self, config_path: str = "config/config.json"):
"""Initialize the framework"""
self.config_path = config_path
self.config = self._load_config()
self.session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
self._setup_directories()
# LLMManager instance will be created dynamically per agent role to select specific profiles
self.llm_manager_instance: Optional[LLMManager] = None
self.selected_agent_role: Optional[str] = None
# Initialize tool installer
self.tool_installer = ToolInstaller()
logger.info(f"NeuroSploitv2 initialized - Session: {self.session_id}")
def experience_mode(self):
"""
Experience/Wizard Mode - Guided step-by-step configuration.
Navigate through options to build your pentest configuration.
"""
print("""
╔═══════════════════════════════════════════════════════════╗
║ NEUROSPLOIT - EXPERIENCE MODE (WIZARD) ║
║ Step-by-step Configuration ║
╚═══════════════════════════════════════════════════════════╝
""")
config = {
"target": None,
"context_file": None,
"llm_profile": None,
"agent_role": None,
"prompt": None,
"mode": None
}
# Step 1: Choose Mode
print("\n[STEP 1/6] Choose Operation Mode")
print("-" * 50)
print(" 1. AI Analysis - Analyze recon context with LLM (no tools)")
print(" 2. Full Scan - Run real pentest tools + AI analysis")
print(" 3. Quick Scan - Fast essential checks + AI analysis")
print(" 4. Recon Only - Run reconnaissance tools, save context")
print(" 0. Cancel")
while True:
choice = input("\n Select mode [1-4]: ").strip()
if choice == "0":
print("\n[!] Cancelled.")
return
if choice in ["1", "2", "3", "4"]:
config["mode"] = {"1": "analysis", "2": "full_scan", "3": "quick_scan", "4": "recon"}[choice]
break
print(" Invalid choice. Enter 1-4 or 0 to cancel.")
# Step 2: Target
print(f"\n[STEP 2/6] Set Target")
print("-" * 50)
target = input(" Enter target URL or domain: ").strip()
if not target:
print("\n[!] Target is required. Cancelled.")
return
config["target"] = target
# Step 3: Context File (for analysis mode)
if config["mode"] == "analysis":
print(f"\n[STEP 3/6] Context File")
print("-" * 50)
print(" Context file contains recon data collected previously.")
# List available context files
context_files = list(Path("results").glob("context_*.json"))
if context_files:
print("\n Available context files:")
for i, f in enumerate(context_files[-10:], 1):
print(f" {i}. {f.name}")
print(f" {len(context_files[-10:])+1}. Enter custom path")
choice = input(f"\n Select file [1-{len(context_files[-10:])+1}]: ").strip()
try:
idx = int(choice) - 1
if 0 <= idx < len(context_files[-10:]):
config["context_file"] = str(context_files[-10:][idx])
else:
custom = input(" Enter context file path: ").strip()
if custom:
config["context_file"] = custom
except ValueError:
custom = input(" Enter context file path: ").strip()
if custom:
config["context_file"] = custom
else:
custom = input(" Enter context file path (or press Enter to skip): ").strip()
if custom:
config["context_file"] = custom
if not config["context_file"]:
print("\n[!] Analysis mode requires a context file. Cancelled.")
return
else:
print(f"\n[STEP 3/6] Context File (Optional)")
print("-" * 50)
use_context = input(" Load existing context file? [y/N]: ").strip().lower()
if use_context == 'y':
context_files = list(Path("results").glob("context_*.json"))
if context_files:
print("\n Available context files:")
for i, f in enumerate(context_files[-10:], 1):
print(f" {i}. {f.name}")
choice = input(f"\n Select file [1-{len(context_files[-10:])}] or path: ").strip()
try:
idx = int(choice) - 1
if 0 <= idx < len(context_files[-10:]):
config["context_file"] = str(context_files[-10:][idx])
except ValueError:
if choice:
config["context_file"] = choice
# Step 4: LLM Profile
print(f"\n[STEP 4/6] LLM Profile")
print("-" * 50)
profiles = list(self.config.get('llm', {}).get('profiles', {}).keys())
default_profile = self.config.get('llm', {}).get('default_profile', '')
if profiles:
print(" Available LLM profiles:")
for i, p in enumerate(profiles, 1):
marker = " (default)" if p == default_profile else ""
print(f" {i}. {p}{marker}")
choice = input(f"\n Select profile [1-{len(profiles)}] or Enter for default: ").strip()
if choice:
try:
idx = int(choice) - 1
if 0 <= idx < len(profiles):
config["llm_profile"] = profiles[idx]
except ValueError:
pass
if not config["llm_profile"]:
config["llm_profile"] = default_profile
else:
print(" No LLM profiles configured. Using default.")
config["llm_profile"] = default_profile
# Step 5: Agent Role (optional)
print(f"\n[STEP 5/6] Agent Role (Optional)")
print("-" * 50)
roles = list(self.config.get('agent_roles', {}).keys())
if roles:
print(" Available agent roles:")
for i, r in enumerate(roles, 1):
desc = self.config['agent_roles'][r].get('description', '')[:50]
print(f" {i}. {r} - {desc}")
print(f" {len(roles)+1}. None (use default)")
choice = input(f"\n Select role [1-{len(roles)+1}]: ").strip()
try:
idx = int(choice) - 1
if 0 <= idx < len(roles):
config["agent_role"] = roles[idx]
except ValueError:
pass
# Step 6: Custom Prompt
if config["mode"] in ["analysis", "full_scan", "quick_scan"]:
print(f"\n[STEP 6/6] Custom Prompt")
print("-" * 50)
print(" Enter your instructions for the AI agent.")
print(" (What should it analyze, test, or look for?)")
print(" Press Enter twice to finish.\n")
lines = []
while True:
line = input(" > ")
if line == "" and lines and lines[-1] == "":
break
lines.append(line)
config["prompt"] = "\n".join(lines).strip()
if not config["prompt"]:
config["prompt"] = f"Perform comprehensive security assessment on {config['target']}"
else:
print(f"\n[STEP 6/6] Skipped (Recon mode)")
config["prompt"] = None
# Summary and Confirmation
print(f"\n{'='*60}")
print(" CONFIGURATION SUMMARY")
print(f"{'='*60}")
print(f" Mode: {config['mode']}")
print(f" Target: {config['target']}")
print(f" Context File: {config['context_file'] or 'None'}")
print(f" LLM Profile: {config['llm_profile']}")
print(f" Agent Role: {config['agent_role'] or 'default'}")
if config["prompt"]:
print(f" Prompt: {config['prompt'][:60]}...")
print(f"{'='*60}")
confirm = input("\n Execute with this configuration? [Y/n]: ").strip().lower()
if confirm == 'n':
print("\n[!] Cancelled.")
return
# Execute based on mode
print(f"\n[*] Starting execution...")
context = None
if config["context_file"]:
from core.context_builder import load_context_from_file
context = load_context_from_file(config["context_file"])
if context:
print(f"[+] Loaded context from: {config['context_file']}")
if config["mode"] == "recon":
self.run_full_recon(config["target"], with_ai_analysis=bool(config["agent_role"]))
elif config["mode"] == "analysis":
agent_role = config["agent_role"] or "bug_bounty_hunter"
self.execute_agent_role(
agent_role,
config["prompt"],
llm_profile_override=config["llm_profile"],
recon_context=context
)
elif config["mode"] == "full_scan":
self.execute_real_scan(
config["target"],
scan_type="full",
agent_role=config["agent_role"],
recon_context=context
)
elif config["mode"] == "quick_scan":
self.execute_real_scan(
config["target"],
scan_type="quick",
agent_role=config["agent_role"],
recon_context=context
)
print(f"\n[+] Execution complete!")
def _setup_directories(self):
"""Create necessary directories"""
dirs = ['logs', 'reports', 'data', 'custom_agents', 'results']
for d in dirs:
Path(d).mkdir(exist_ok=True)
def _load_config(self) -> Dict:
"""Load configuration from file"""
if not os.path.exists(self.config_path):
if os.path.exists("config/config-example.json"):
import shutil
shutil.copy("config/config-example.json", self.config_path)
logger.info(f"Created default configuration at {self.config_path}")
else:
logger.error("config-example.json not found. Cannot create default configuration.")
return {}
with open(self.config_path, 'r') as f:
return json.load(f)
def _initialize_llm_manager(self, agent_llm_profile: Optional[str] = None):
"""Initializes LLMManager with a specific profile or default."""
llm_config = self.config.get('llm', {})
if agent_llm_profile:
# Temporarily modify config to set the default profile for LLMManager init
original_default = llm_config.get('default_profile')
llm_config['default_profile'] = agent_llm_profile
self.llm_manager_instance = LLMManager({"llm": llm_config})
llm_config['default_profile'] = original_default # Restore original default
else:
self.llm_manager_instance = LLMManager({"llm": llm_config})
def execute_agent_role(self, agent_role_name: str, user_input: str, additional_context: Optional[Dict] = None, llm_profile_override: Optional[str] = None, recon_context: Optional[Dict] = None):
"""
Execute a specific agent role with a given input.
Args:
agent_role_name: Name of the agent role to use
user_input: The prompt/task for the agent
additional_context: Additional campaign data
llm_profile_override: Override the default LLM profile
recon_context: Pre-collected recon context (skips discovery if provided)
"""
logger.info(f"Starting execution for agent role: {agent_role_name}")
agent_roles_config = self.config.get('agent_roles', {})
role_config = agent_roles_config.get(agent_role_name)
# If role not in config, create a default config (allows dynamic roles from .md files)
if not role_config:
logger.info(f"Agent role '{agent_role_name}' not in config.json, using dynamic mode with prompt file.")
role_config = {
"enabled": True,
"tools_allowed": [],
"description": f"Dynamic agent role loaded from {agent_role_name}.md"
}
if not role_config.get('enabled', True):
logger.warning(f"Agent role '{agent_role_name}' is disabled in configuration.")
return {"warning": f"Agent role '{agent_role_name}' is disabled."}
llm_profile_name = llm_profile_override or role_config.get('llm_profile', self.config['llm']['default_profile'])
self._initialize_llm_manager(llm_profile_name)
if not self.llm_manager_instance:
logger.error("LLM Manager could not be initialized.")
return {"error": "LLM Manager initialization failed."}
# Get the prompts for the selected agent role
# Assuming agent_role_name directly maps to the .md filename
agent_prompts = self.llm_manager_instance.prompts.get("md_prompts", {}).get(agent_role_name)
if not agent_prompts:
logger.error(f"Prompts for agent role '{agent_role_name}' not found in MD library.")
return {"error": f"Prompts for agent role '{agent_role_name}' not found."}
# Instantiate and execute the BaseAgent
agent_instance = BaseAgent(agent_role_name, self.config, self.llm_manager_instance, agent_prompts)
# Execute with recon_context if provided (uses context-based flow)
results = agent_instance.execute(user_input, additional_context, recon_context=recon_context)
# Save results
campaign_results = {
"session_id": self.session_id,
"agent_role": agent_role_name,
"input": user_input,
"timestamp": datetime.now().isoformat(),
"results": results
}
self._save_results(campaign_results)
return campaign_results
def _save_results(self, results: Dict):
"""Save campaign results"""
output_file = f"results/campaign_{self.session_id}.json"
with open(output_file, 'w') as f:
json.dump(results, f, indent=4)
logger.info(f"Results saved to {output_file}")
# Generate report
self._generate_report(results)
def _generate_report(self, results: Dict):
"""Generate professional HTML report with charts and modern CSS"""
report_file = f"reports/report_{self.session_id}.html"
# Get data
llm_response = results.get('results', {}).get('llm_response', '')
if isinstance(llm_response, dict):
llm_response = json.dumps(llm_response, indent=2)
report_content = mistune.html(llm_response)
# Extract metrics from report
targets = results.get('results', {}).get('targets', [results.get('input', 'N/A')])
if isinstance(targets, str):
targets = [targets]
tools_executed = results.get('results', {}).get('tools_executed', 0)
# Count severities from report text
critical = len(re.findall(r'\[?Critical\]?', llm_response, re.IGNORECASE))
high = len(re.findall(r'\[?High\]?', llm_response, re.IGNORECASE))
medium = len(re.findall(r'\[?Medium\]?', llm_response, re.IGNORECASE))
low = len(re.findall(r'\[?Low\]?', llm_response, re.IGNORECASE))
info = len(re.findall(r'\[?Info\]?', llm_response, re.IGNORECASE))
total_vulns = critical + high + medium + low
# Risk score calculation
risk_score = min(100, (critical * 25) + (high * 15) + (medium * 8) + (low * 3))
risk_level = "Critical" if risk_score >= 70 else "High" if risk_score >= 50 else "Medium" if risk_score >= 25 else "Low"
risk_color = "#e74c3c" if risk_score >= 70 else "#e67e22" if risk_score >= 50 else "#f1c40f" if risk_score >= 25 else "#27ae60"
html = f"""<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Security Assessment Report - {self.session_id}</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/github-dark.min.css">
<style>
:root {{
--bg-primary: #0a0e17;
--bg-secondary: #111827;
--bg-card: #1a1f2e;
--border-color: #2d3748;
--text-primary: #e2e8f0;
--text-secondary: #94a3b8;
--accent: #3b82f6;
--critical: #ef4444;
--high: #f97316;
--medium: #eab308;
--low: #22c55e;
--info: #6366f1;
}}
* {{ margin: 0; padding: 0; box-sizing: border-box; }}
body {{
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
background: var(--bg-primary);
color: var(--text-primary);
line-height: 1.6;
}}
.container {{ max-width: 1400px; margin: 0 auto; padding: 2rem; }}
/* Header */
.header {{
background: linear-gradient(135deg, #1e3a5f 0%, #0f172a 100%);
padding: 3rem 2rem;
border-radius: 16px;
margin-bottom: 2rem;
border: 1px solid var(--border-color);
}}
.header-content {{ display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem; }}
.logo {{ font-size: 2rem; font-weight: 800; background: linear-gradient(90deg, #3b82f6, #8b5cf6); -webkit-background-clip: text; -webkit-text-fill-color: transparent; }}
.report-meta {{ text-align: right; color: var(--text-secondary); font-size: 0.9rem; }}
/* Stats Grid */
.stats-grid {{ display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1.5rem; margin-bottom: 2rem; }}
.stat-card {{
background: var(--bg-card);
border-radius: 12px;
padding: 1.5rem;
border: 1px solid var(--border-color);
transition: transform 0.2s, box-shadow 0.2s;
}}
.stat-card:hover {{ transform: translateY(-2px); box-shadow: 0 8px 25px rgba(0,0,0,0.3); }}
.stat-value {{ font-size: 2.5rem; font-weight: 700; }}
.stat-label {{ color: var(--text-secondary); font-size: 0.875rem; text-transform: uppercase; letter-spacing: 0.5px; }}
.stat-critical .stat-value {{ color: var(--critical); }}
.stat-high .stat-value {{ color: var(--high); }}
.stat-medium .stat-value {{ color: var(--medium); }}
.stat-low .stat-value {{ color: var(--low); }}
/* Risk Score */
.risk-section {{ display: grid; grid-template-columns: 1fr 1fr; gap: 2rem; margin-bottom: 2rem; }}
@media (max-width: 900px) {{ .risk-section {{ grid-template-columns: 1fr; }} }}
.risk-card {{
background: var(--bg-card);
border-radius: 16px;
padding: 2rem;
border: 1px solid var(--border-color);
}}
.risk-score-circle {{
width: 180px; height: 180px;
border-radius: 50%;
background: conic-gradient({risk_color} 0deg, {risk_color} {risk_score * 3.6}deg, #2d3748 {risk_score * 3.6}deg);
display: flex; align-items: center; justify-content: center;
margin: 0 auto 1rem;
}}
.risk-score-inner {{
width: 140px; height: 140px;
border-radius: 50%;
background: var(--bg-card);
display: flex; flex-direction: column; align-items: center; justify-content: center;
}}
.risk-score-value {{ font-size: 3rem; font-weight: 800; color: {risk_color}; }}
.risk-score-label {{ color: var(--text-secondary); font-size: 0.875rem; }}
.chart-container {{ height: 250px; }}
/* Targets */
.targets-list {{ display: flex; flex-wrap: wrap; gap: 0.5rem; margin-top: 1rem; }}
.target-tag {{
background: rgba(59, 130, 246, 0.2);
border: 1px solid var(--accent);
padding: 0.5rem 1rem;
border-radius: 20px;
font-size: 0.875rem;
font-family: monospace;
}}
/* Main Report */
.report-section {{
background: var(--bg-card);
border-radius: 16px;
padding: 2rem;
border: 1px solid var(--border-color);
margin-bottom: 2rem;
}}
.section-title {{
font-size: 1.5rem;
font-weight: 700;
margin-bottom: 1.5rem;
padding-bottom: 1rem;
border-bottom: 2px solid var(--accent);
display: flex;
align-items: center;
gap: 0.75rem;
}}
.section-title::before {{
content: '';
width: 4px;
height: 24px;
background: var(--accent);
border-radius: 2px;
}}
/* Vulnerability Cards */
.report-content h2 {{
background: linear-gradient(90deg, var(--bg-secondary), transparent);
padding: 1rem 1.5rem;
border-radius: 8px;
margin: 2rem 0 1rem;
border-left: 4px solid var(--accent);
font-size: 1.25rem;
}}
.report-content h2:has-text("Critical"), .report-content h2:contains("CRITICAL") {{ border-left-color: var(--critical); }}
.report-content h3 {{ color: var(--accent); margin: 1.5rem 0 0.75rem; font-size: 1.1rem; }}
.report-content table {{
width: 100%;
border-collapse: collapse;
margin: 1rem 0;
background: var(--bg-secondary);
border-radius: 8px;
overflow: hidden;
}}
.report-content th, .report-content td {{
padding: 0.75rem 1rem;
text-align: left;
border-bottom: 1px solid var(--border-color);
}}
.report-content th {{ background: rgba(59, 130, 246, 0.1); color: var(--accent); font-weight: 600; }}
.report-content pre {{
background: #0d1117;
border: 1px solid var(--border-color);
border-radius: 8px;
padding: 1rem;
overflow-x: auto;
margin: 1rem 0;
}}
.report-content code {{
font-family: 'JetBrains Mono', 'Fira Code', monospace;
font-size: 0.875rem;
}}
.report-content p {{ margin: 0.75rem 0; }}
.report-content hr {{ border: none; border-top: 1px solid var(--border-color); margin: 2rem 0; }}
.report-content ul, .report-content ol {{ margin: 1rem 0; padding-left: 1.5rem; }}
.report-content li {{ margin: 0.5rem 0; }}
/* Severity Badges */
.report-content h2 {{ position: relative; }}
/* Footer */
.footer {{
text-align: center;
padding: 2rem;
color: var(--text-secondary);
font-size: 0.875rem;
border-top: 1px solid var(--border-color);
margin-top: 3rem;
}}
/* Print Styles */
@media print {{
body {{ background: white; color: black; }}
.stat-card, .risk-card, .report-section {{ border: 1px solid #ddd; }}
}}
</style>
</head>
<body>
<div class="container">
<div class="header">
<div class="header-content">
<div>
<div class="logo">NeuroSploit</div>
<p style="color: var(--text-secondary); margin-top: 0.5rem;">AI-Powered Security Assessment Report</p>
</div>
<div class="report-meta">
<div><strong>Report ID:</strong> {self.session_id}</div>
<div><strong>Date:</strong> {datetime.now().strftime('%Y-%m-%d %H:%M')}</div>
<div><strong>Agent:</strong> {results.get('agent_role', 'Security Analyst')}</div>
</div>
</div>
<div class="targets-list">
{''.join(f'<span class="target-tag">{t}</span>' for t in targets[:5])}
</div>
</div>
<div class="stats-grid">
<div class="stat-card stat-critical">
<div class="stat-value">{critical}</div>
<div class="stat-label">Critical</div>
</div>
<div class="stat-card stat-high">
<div class="stat-value">{high}</div>
<div class="stat-label">High</div>
</div>
<div class="stat-card stat-medium">
<div class="stat-value">{medium}</div>
<div class="stat-label">Medium</div>
</div>
<div class="stat-card stat-low">
<div class="stat-value">{low}</div>
<div class="stat-label">Low</div>
</div>
<div class="stat-card">
<div class="stat-value" style="color: var(--accent);">{tools_executed}</div>
<div class="stat-label">Tests Run</div>
</div>
</div>
<div class="risk-section">
<div class="risk-card">
<h3 style="text-align: center; margin-bottom: 1rem; color: var(--text-secondary);">Risk Score</h3>
<div class="risk-score-circle">
<div class="risk-score-inner">
<div class="risk-score-value">{risk_score}</div>
<div class="risk-score-label">{risk_level}</div>
</div>
</div>
</div>
<div class="risk-card">
<h3 style="margin-bottom: 1rem; color: var(--text-secondary);">Severity Distribution</h3>
<div class="chart-container">
<canvas id="severityChart"></canvas>
</div>
</div>
</div>
<div class="report-section">
<div class="section-title">Vulnerability Report</div>
<div class="report-content">
{report_content}
</div>
</div>
<div class="footer">
<p>Generated by <strong>NeuroSploit</strong> - AI-Powered Penetration Testing Framework</p>
<p style="margin-top: 0.5rem;">Confidential - For authorized personnel only</p>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js"></script>
<script>
hljs.highlightAll();
// Severity Chart
const ctx = document.getElementById('severityChart').getContext('2d');
new Chart(ctx, {{
type: 'doughnut',
data: {{
labels: ['Critical', 'High', 'Medium', 'Low', 'Info'],
datasets: [{{
data: [{critical}, {high}, {medium}, {low}, {info}],
backgroundColor: ['#ef4444', '#f97316', '#eab308', '#22c55e', '#6366f1'],
borderWidth: 0,
hoverOffset: 10
}}]
}},
options: {{
responsive: true,
maintainAspectRatio: false,
plugins: {{
legend: {{
position: 'right',
labels: {{ color: '#94a3b8', padding: 15, font: {{ size: 12 }} }}
}}
}},
cutout: '60%'
}}
}});
</script>
</body>
</html>"""
with open(report_file, 'w') as f:
f.write(html)
logger.info(f"Report generated: {report_file}")
def execute_real_scan(self, target: str, scan_type: str = "full", agent_role: str = None, recon_context: Dict = None) -> Dict:
"""
Execute a real penetration test with actual tools and generate professional report.
Args:
target: The target URL or IP to scan
scan_type: "full" for comprehensive scan, "quick" for essential checks
agent_role: Optional agent role for AI analysis of results
"""
print(f"\n{'='*70}")
print(" NeuroSploitv2 - Real Penetration Test Execution")
print(f"{'='*70}")
print(f"\n[*] Target: {target}")
print(f"[*] Scan Type: {scan_type}")
print(f"[*] Session ID: {self.session_id}\n")
# Check for required tools
print("[*] Checking required tools...")
missing_tools = []
essential_tools = ["nmap", "curl"]
for tool in essential_tools:
installed, path = self.tool_installer.check_tool_installed(tool)
if not installed:
missing_tools.append(tool)
print(f" [-] {tool}: NOT INSTALLED")
else:
print(f" [+] {tool}: {path}")
if missing_tools:
print(f"\n[!] Missing required tools: {', '.join(missing_tools)}")
print("[!] Run 'install_tools' to install required tools.")
return {"error": f"Missing tools: {missing_tools}"}
# Execute the scan
executor = PentestExecutor(target, self.config, recon_context=recon_context)
if recon_context:
print(f"[+] Using recon context with {recon_context.get('attack_surface', {}).get('total_subdomains', 0)} subdomains, {recon_context.get('attack_surface', {}).get('live_hosts', 0)} live hosts")
if scan_type == "quick":
scan_result = executor.run_quick_scan()
else:
scan_result = executor.run_full_scan()
# Get results as dictionary
results_dict = executor.to_dict()
# Get AI analysis if agent role specified
llm_analysis = ""
if agent_role:
print(f"\n[*] Running AI analysis with {agent_role}...")
llm_profile = self.config.get('agent_roles', {}).get(agent_role, {}).get('llm_profile')
self._initialize_llm_manager(llm_profile)
if self.llm_manager_instance:
agent_prompts = self.llm_manager_instance.prompts.get("md_prompts", {}).get(agent_role, {})
if agent_prompts:
agent = BaseAgent(agent_role, self.config, self.llm_manager_instance, agent_prompts)
analysis_input = f"""
Analyze the following penetration test results and provide a detailed security assessment:
Target: {target}
Scan Type: {scan_type}
SCAN RESULTS:
{json.dumps(results_dict, indent=2)}
Provide:
1. Executive summary of findings
2. Risk assessment
3. Detailed analysis of each vulnerability
4. Prioritized remediation recommendations
5. Additional attack vectors to explore
"""
analysis_result = agent.execute(analysis_input, results_dict)
llm_analysis = analysis_result.get("llm_response", "")
# Generate professional report
print("\n[*] Generating professional report...")
report_gen = ReportGenerator(results_dict, llm_analysis)
html_report = report_gen.save_report("reports")
json_report = report_gen.save_json_report("results")
print(f"\n{'='*70}")
print("[+] Scan Complete!")
print(f" - Vulnerabilities Found: {len(results_dict.get('vulnerabilities', []))}")
print(f" - HTML Report: {html_report}")
print(f" - JSON Results: {json_report}")
print(f"{'='*70}\n")
return {
"session_id": self.session_id,
"target": target,
"scan_type": scan_type,
"results": results_dict,
"html_report": html_report,
"json_report": json_report
}
def run_full_recon(self, target: str, with_ai_analysis: bool = True) -> Dict:
"""
Run full advanced recon and consolidate all outputs.
This command runs all recon tools:
- Subdomain enumeration (subfinder, amass, assetfinder)
- HTTP probing (httpx, httprobe)
- URL collection (gau, waybackurls, waymore)
- Web crawling (katana, gospider)
- Port scanning (naabu, nmap)
- DNS enumeration
- Vulnerability scanning (nuclei)
All results are consolidated into a single context file
that will be used by the LLM to enhance testing.
"""
print(f"\n{'='*70}")
print(" NEUROSPLOIT - FULL ADVANCED RECON")
print(f"{'='*70}")
print(f"\n[*] Target: {target}")
print(f"[*] Session ID: {self.session_id}")
print(f"[*] With AI analysis: {with_ai_analysis}\n")
# Execute full recon
recon_runner = FullReconRunner(self.config)
# Determine target type
target_type = "url" if target.startswith(('http://', 'https://')) else "domain"
recon_results = recon_runner.run(target, target_type)
# If requested, run AI analysis
llm_analysis = ""
if with_ai_analysis and self.selected_agent_role:
print(f"\n[*] Running AI analysis with {self.selected_agent_role}...")
llm_profile = self.config.get('agent_roles', {}).get(self.selected_agent_role, {}).get('llm_profile')
self._initialize_llm_manager(llm_profile)
if self.llm_manager_instance:
agent_prompts = self.llm_manager_instance.prompts.get("md_prompts", {}).get(self.selected_agent_role, {})
if agent_prompts:
agent = BaseAgent(self.selected_agent_role, self.config, self.llm_manager_instance, agent_prompts)
analysis_prompt = f"""
Analise o seguinte contexto de reconhecimento e identifique:
1. Vetores de ataque mais promissores
2. Vulnerabilidades potenciais baseadas nas tecnologias detectadas
3. Endpoints prioritarios para teste
4. Recomendacoes de proximos passos para o pentest
CONTEXTO DE RECON:
{recon_results.get('context_text', '')}
"""
analysis_result = agent.execute(analysis_prompt, recon_results.get('context', {}))
llm_analysis = analysis_result.get("llm_response", "")
# Generate report if vulnerabilities found
context = recon_results.get('context', {})
vulns = context.get('vulnerabilities', {}).get('all', [])
if vulns or llm_analysis:
print("\n[*] Generating report...")
from core.report_generator import ReportGenerator
report_data = {
"target": target,
"scan_started": datetime.now().isoformat(),
"scan_completed": datetime.now().isoformat(),
"attack_surface": context.get('attack_surface', {}),
"vulnerabilities": vulns,
"technologies": context.get('data', {}).get('technologies', []),
"open_ports": context.get('data', {}).get('open_ports', [])
}
report_gen = ReportGenerator(report_data, llm_analysis)
html_report = report_gen.save_report("reports")
print(f"[+] HTML Report: {html_report}")
print(f"\n{'='*70}")
print("[+] ADVANCED RECON COMPLETE!")
print(f"[+] Consolidated context: {recon_results.get('context_file', '')}")
print(f"[+] Text context: {recon_results.get('context_text_file', '')}")
print(f"{'='*70}\n")
return {
"session_id": self.session_id,
"target": target,
"recon_results": recon_results,
"llm_analysis": llm_analysis,
"context_file": recon_results.get('context_file', ''),
"context_text_file": recon_results.get('context_text_file', '')
}
def check_tools_status(self):
"""Check and display status of all pentest tools"""
print("\n" + "="*60)
print(" PENTEST TOOLS STATUS")
print("="*60 + "\n")
status = self.tool_installer.get_tools_status()
installed_count = 0
missing_count = 0
for tool_name, info in status.items():
if info["installed"]:
print(f" [+] {tool_name:15} - INSTALLED ({info['path']})")
installed_count += 1
else:
print(f" [-] {tool_name:15} - NOT INSTALLED")
missing_count += 1
print("\n" + "-"*60)
print(f" Total: {installed_count} installed, {missing_count} missing")
print("-"*60)
if missing_count > 0:
print("\n [!] Run 'install_tools' to install missing tools")
return status
def update_tools_config(self):
"""Update config with found tool paths"""
status = self.tool_installer.get_tools_status()
for tool_name, info in status.items():
if info["installed"] and info["path"]:
self.config['tools'][tool_name] = info["path"]
# Save updated config
with open(self.config_path, 'w') as f:
json.dump(self.config, f, indent=4)
logger.info("Tools configuration updated")
def list_agent_roles(self):
"""List all available agent roles."""
print("\nAvailable Agent Roles:")
for role_name, role_details in self.config.get('agent_roles', {}).items():
status = "Enabled" if role_details.get("enabled") else "Disabled"
print(f" - {role_name} ({status}): {role_details.get('description', 'No description.')}")
def list_llm_profiles(self):
"""List all available LLM profiles."""
print("\nAvailable LLM Profiles:")
for profile_name in self.config.get('llm', {}).get('profiles', {}).keys():
print(f" - {profile_name}")
def interactive_mode(self):
"""Start interactive mode"""
completer = Completer(self)
readline.set_completer(completer.complete)
readline.parse_and_bind("tab: complete")
print("""
╔═══════════════════════════════════════════════════════════╗
║ NeuroSploitv2 - AI Offensive Security ║
║ Interactive Mode ║
╚═══════════════════════════════════════════════════════════╝
""")
while True:
try:
cmd = input("\nNeuroSploit> ").strip()
if cmd.lower() in ['exit', 'quit']:
break
elif cmd.lower() == 'help':
self._show_help()
elif cmd.startswith('run_agent'):
parts = cmd.split(maxsplit=2) # e.g., run_agent red_team_agent "scan example.com"
if len(parts) >= 2:
if len(parts) == 2:
if self.selected_agent_role:
user_input = parts[1].strip('"')
self.execute_agent_role(self.selected_agent_role, user_input)
else:
print("No agent selected. Use 'set_agent <agent_name>' or 'run_agent <agent_name> \"<user_input>\"'")
else:
agent_role_name = parts[1]
user_input = parts[2].strip('"')
self.execute_agent_role(agent_role_name, user_input)
else:
print("Usage: run_agent <agent_role_name> \"<user_input>\"")
elif cmd.startswith('config'):
print(json.dumps(self.config, indent=2))
elif cmd.lower() == 'list_roles':
print("\nAvailable Agent Roles:")
for role_name, role_details in self.config.get('agent_roles', {}).items():
status = "Enabled" if role_details.get("enabled") else "Disabled"
marker = "*" if role_name == self.selected_agent_role else " "
print(f" {marker} {role_name} ({status}): {role_details.get('description', 'No description.')}")
elif cmd.lower() == 'list_profiles':
print("\nAvailable LLM Profiles:")
default_profile = self.config['llm']['default_profile']
for profile_name in self.config.get('llm', {}).get('profiles', {}).keys():
marker = "*" if profile_name == default_profile else " "
print(f" {marker} {profile_name}")
elif cmd.startswith('set_profile'):
parts = cmd.split(maxsplit=1)
if len(parts) > 1:
profile_name = parts[1].strip()
if profile_name in self.config.get('llm', {}).get('profiles', {}):
self.config['llm']['default_profile'] = profile_name
print(f"Default LLM profile set to: {profile_name}")
else:
print(f"Profile '{profile_name}' not found.")
else:
print("Usage: set_profile <profile_name>")
elif cmd.startswith('set_agent'):
parts = cmd.split(maxsplit=1)
if len(parts) > 1:
agent_name = parts[1].strip()
if agent_name in self.config.get('agent_roles', {}):
self.selected_agent_role = agent_name
print(f"Default agent set to: {agent_name}")
else:
print(f"Agent '{agent_name}' not found.")
else:
print("Usage: set_agent <agent_name>")
elif cmd.lower() == 'discover_ollama':
self.discover_ollama_models()
elif cmd.lower() == 'install_tools':
run_installer_menu()
self.update_tools_config()
elif cmd.lower() == 'check_tools':
self.check_tools_status()
elif cmd.startswith('scan '):
parts = cmd.split(maxsplit=1)
if len(parts) > 1:
target = parts[1].strip().strip('"')
agent_role = self.selected_agent_role or "bug_bounty_hunter"
self.execute_real_scan(target, scan_type="full", agent_role=agent_role)
else:
print("Usage: scan <target_url>")
elif cmd.startswith('quick_scan '):
parts = cmd.split(maxsplit=1)
if len(parts) > 1:
target = parts[1].strip().strip('"')
agent_role = self.selected_agent_role or "bug_bounty_hunter"
self.execute_real_scan(target, scan_type="quick", agent_role=agent_role)
else:
print("Usage: quick_scan <target_url>")
elif cmd.startswith('recon ') or cmd.startswith('full_recon '):
parts = cmd.split(maxsplit=1)
if len(parts) > 1:
target = parts[1].strip().strip('"')
with_ai = self.selected_agent_role is not None
self.run_full_recon(target, with_ai_analysis=with_ai)
else:
print("Usage: recon <target_domain_or_url>")
print(" full_recon <target_domain_or_url>")
print("\nThis command runs all recon tools:")
print(" - Subdomain enumeration (subfinder, amass, assetfinder)")
print(" - HTTP probing (httpx)")
print(" - URL collection (gau, waybackurls)")
print(" - Web crawling (katana, gospider)")
print(" - Port scanning (naabu, nmap)")
print(" - Vulnerability scanning (nuclei)")
print("\nAll outputs are consolidated into a single context file")
print("for use by the LLM.")
elif cmd.lower() in ['experience', 'wizard']:
self.experience_mode()
elif cmd.startswith('analyze '):
parts = cmd.split(maxsplit=1)
if len(parts) > 1:
context_file = parts[1].strip().strip('"')
if os.path.exists(context_file):
from core.context_builder import load_context_from_file
context = load_context_from_file(context_file)
if context:
prompt = input("Enter analysis prompt: ").strip()
if prompt:
agent_role = self.selected_agent_role or "bug_bounty_hunter"
self.execute_agent_role(agent_role, prompt, recon_context=context)
else:
print(f"Context file not found: {context_file}")
else:
print("Usage: analyze <context_file.json>")
print(" Then enter your analysis prompt")
else:
print("Unknown command. Type 'help' for available commands.")
except KeyboardInterrupt:
print("\nOperation cancelled.")
continue
except Exception as e:
logger.error(f"Error: {e}")
def discover_ollama_models(self):
"""Discover local Ollama models and add them to the configuration."""
try:
import requests
except ImportError:
print("The 'requests' library is not installed. Please install it with 'pip3 install requests'")
return
try:
response = requests.get("http://localhost:11434/api/tags")
response.raise_for_status()
models = response.json().get("models", [])
except (requests.exceptions.ConnectionError, requests.exceptions.HTTPError):
print("Ollama server not found. Please make sure Ollama is running.")
return
if not models:
print("No Ollama models found.")
return
print("Available Ollama models:")
for i, model in enumerate(models):
print(f" {i+1}. {model['name']}")
try:
selections = input("Enter the numbers of the models to add (e.g., 1,3,4): ")
selected_indices = [int(s.strip()) - 1 for s in selections.split(',')]
except ValueError:
print("Invalid input. Please enter a comma-separated list of numbers.")
return
for i in selected_indices:
if 0 <= i < len(models):
model_name = models[i]['name']
profile_name = f"ollama_{model_name.replace(':', '_').replace('-', '_')}"
self.config['llm']['profiles'][profile_name] = {
"provider": "ollama",
"model": model_name,
"api_key": "",
"temperature": 0.7,
"max_tokens": 4096,
"input_token_limit": 8000,
"output_token_limit": 4000,
"cache_enabled": True,
"search_context_level": "medium",
"pdf_support_enabled": False,
"guardrails_enabled": True,
"hallucination_mitigation_strategy": None
}
print(f"Added profile '{profile_name}' for model '{model_name}'.")
with open(self.config_path, 'w') as f:
json.dump(self.config, f, indent=4)
print("Configuration updated.")
def _show_help(self):
"""Show help menu"""
print("""
=======================================================================
NeuroSploitv2 - Command Reference
=======================================================================
MODES:
experience / wizard - GUIDED step-by-step setup (recommended!)
analyze <context.json> - LLM-only analysis with context file
RECON COMMANDS (Data Collection):
recon <target> - Run FULL RECON and consolidate outputs
full_recon <target> - Alias for recon
The recon command runs ALL reconnaissance tools:
- Subdomain enumeration (subfinder, amass, assetfinder)
- HTTP probing (httpx, httprobe)
- URL collection (gau, waybackurls, waymore)
- Web crawling (katana, gospider)
- Port scanning (naabu, nmap)
- DNS enumeration
- Vulnerability scanning (nuclei)
All outputs are CONSOLIDATED into a single context file
for use by the LLM!
SCANNING COMMANDS (Execute Real Tools):
scan <target> - Run FULL pentest scan with real tools
quick_scan <target> - Run QUICK scan (essential checks only)
TOOL MANAGEMENT:
install_tools - Install required pentest tools
check_tools - Check which tools are installed
AGENT COMMANDS (AI Analysis):
run_agent <role> "<input>" - Execute AI agent with input
set_agent <agent_name> - Set default agent for AI analysis
CONFIGURATION:
list_roles - List all available agent roles
list_profiles - List all LLM profiles
set_profile <name> - Set the default LLM profile
discover_ollama - Discover and configure local Ollama models
config - Show current configuration
GENERAL:
help - Show this help menu
exit/quit - Exit the framework
RECOMMENDED WORKFLOW:
1. recon example.com - First run full recon
2. analyze results/context_X.json - LLM-only analysis with context
OR
1. experience - Use guided wizard mode
EXAMPLES:
experience - Start guided wizard
recon example.com - Full recon with consolidated output
analyze results/context_X.json - LLM analysis of context file
scan https://example.com - Full pentest scan
quick_scan 192.168.1.1 - Quick vulnerability check
=======================================================================
""")
def main():
"""Main entry point"""
parser = argparse.ArgumentParser(
description='NeuroSploitv2 - AI-Powered Penetration Testing Framework',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
3 EXECUTION MODES:
==================
1. CLI MODE (Direct command-line):
python neurosploit.py --input "Your prompt" -cf context.json --llm-profile PROFILE
2. INTERACTIVE MODE (-i):
python neurosploit.py -i
Then use commands: recon, analyze, scan, etc.
3. EXPERIENCE/WIZARD MODE (-e):
python neurosploit.py -e
Guided step-by-step configuration - RECOMMENDED for beginners!
EXAMPLES:
=========
# Step 1: Run recon to collect data
python neurosploit.py --recon example.com
# Step 2: LLM-only analysis (no tool execution)
python neurosploit.py --input "Analyze for SQLi and XSS" -cf results/context_X.json --llm-profile claude_opus
# Or use wizard mode
python neurosploit.py -e
# Run full pentest scan with tools
python neurosploit.py --scan https://example.com
# Interactive mode
python neurosploit.py -i
"""
)
# Recon options
parser.add_argument('--recon', metavar='TARGET',
help='Run FULL RECON on target (subdomain enum, http probe, url collection, etc.)')
# Context file option
parser.add_argument('--context-file', '-cf', metavar='FILE',
help='Load recon context from JSON file (use with --scan or run_agent)')
# Target option (for use with context or agent without running recon)
parser.add_argument('--target', '-t', metavar='TARGET',
help='Specify target URL/domain (use with -cf or --input)')
# Scanning options
parser.add_argument('--scan', metavar='TARGET',
help='Run FULL pentest scan on target (executes real tools)')
parser.add_argument('--quick-scan', metavar='TARGET',
help='Run QUICK pentest scan on target')
# Tool management
parser.add_argument('--install-tools', action='store_true',
help='Install required pentest tools (nmap, sqlmap, nuclei, etc.)')
parser.add_argument('--check-tools', action='store_true',
help='Check status of installed tools')
# Agent options
parser.add_argument('-r', '--agent-role',
help='Name of the agent role to execute (optional)')
parser.add_argument('-i', '--interactive', action='store_true',
help='Start in interactive mode')
parser.add_argument('-e', '--experience', action='store_true',
help='Start in experience/wizard mode (guided setup)')
parser.add_argument('--input', help='Input prompt/task for the agent role')
parser.add_argument('--llm-profile', help='LLM profile to use for the execution')
# Configuration
parser.add_argument('-c', '--config', default='config/config.json',
help='Configuration file path')
parser.add_argument('-v', '--verbose', action='store_true',
help='Enable verbose output')
parser.add_argument('--list-agents', action='store_true',
help='List all available agent roles and exit')
parser.add_argument('--list-profiles', action='store_true',
help='List all available LLM profiles and exit')
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
# Initialize framework
framework = NeuroSploitv2(config_path=args.config)
# Handle tool installation
if args.install_tools:
run_installer_menu()
framework.update_tools_config()
# Handle tool check
elif args.check_tools:
framework.check_tools_status()
# Handle recon
elif args.recon:
framework.run_full_recon(args.recon, with_ai_analysis=bool(args.agent_role))
# Handle full scan
elif args.scan:
agent_role = args.agent_role or "bug_bounty_hunter"
context = None
if args.context_file:
from core.context_builder import load_context_from_file
context = load_context_from_file(args.context_file)
if context:
print(f"[+] Loaded context from: {args.context_file}")
framework.execute_real_scan(args.scan, scan_type="full", agent_role=agent_role, recon_context=context)
# Handle quick scan
elif args.quick_scan:
agent_role = args.agent_role or "bug_bounty_hunter"
context = None
if args.context_file:
from core.context_builder import load_context_from_file
context = load_context_from_file(args.context_file)
if context:
print(f"[+] Loaded context from: {args.context_file}")
framework.execute_real_scan(args.quick_scan, scan_type="quick", agent_role=agent_role, recon_context=context)
# Handle list commands
elif args.list_agents:
framework.list_agent_roles()
elif args.list_profiles:
framework.list_llm_profiles()
# Handle experience/wizard mode
elif args.experience:
framework.experience_mode()
# Handle interactive mode
elif args.interactive:
framework.interactive_mode()
# Handle agent execution with optional context
elif args.agent_role and args.input:
context = None
if args.context_file:
from core.context_builder import load_context_from_file
context = load_context_from_file(args.context_file)
if context:
print(f"[+] Loaded context from: {args.context_file}")
framework.execute_agent_role(
args.agent_role,
args.input,
llm_profile_override=args.llm_profile,
recon_context=context
)
# Handle input-only mode with context file (no role specified)
# Use default agent or just LLM interaction
elif args.input and args.context_file:
from core.context_builder import load_context_from_file
context = load_context_from_file(args.context_file)
if context:
print(f"[+] Loaded context from: {args.context_file}")
# Use default agent role or bug_bounty_hunter
agent_role = args.agent_role or "bug_bounty_hunter"
framework.execute_agent_role(
agent_role,
args.input,
llm_profile_override=args.llm_profile,
recon_context=context
)
else:
print("[!] Failed to load context file")
# Handle target with context file (AI pentest without recon)
elif args.target and args.context_file:
from core.context_builder import load_context_from_file
context = load_context_from_file(args.context_file)
if context:
print(f"[+] Loaded context from: {args.context_file}")
agent_role = args.agent_role or "bug_bounty_hunter"
input_prompt = args.input or f"Perform security assessment on {args.target}"
framework.execute_agent_role(
agent_role,
input_prompt,
llm_profile_override=args.llm_profile,
recon_context=context
)
else:
print("[!] Failed to load context file")
else:
parser.print_help()
print("\n" + "="*70)
print("QUICK START:")
print(" 1. Install tools: python neurosploit.py --install-tools")
print(" 2. Run scan: python neurosploit.py --scan https://target.com")
print(" 3. Interactive: python neurosploit.py -i")
print("="*70)
if __name__ == "__main__":
main()