Files
NeuroSploit/agents/web_pentest_agent.py
2025-12-18 18:18:29 -03:00

121 lines
4.7 KiB
Python

#!/usr/bin/env python3
"""
Web Pentest Agent - Specialized agent for web application penetration testing.
"""
import json
import logging
from typing import Dict, List
from core.llm_manager import LLMManager
from tools.web_pentest import WebRecon # Import the moved WebRecon tool
logger = logging.getLogger(__name__)
class WebPentestAgent:
"""Agent responsible for comprehensive web application penetration testing."""
def __init__(self, config: Dict):
"""Initializes the WebPentestAgent."""
self.config = config
self.llm = LLMManager(config)
self.web_recon = WebRecon(config)
# Placeholder for web exploitation tools if they become separate classes
# self.web_exploiter = WebExploiter(config)
logger.info("WebPentestAgent initialized")
def execute(self, target: str, context: Dict) -> Dict:
"""Executes the web application penetration testing phase."""
logger.info(f"Starting web pentest on {target}")
results = {
"target": target,
"status": "running",
"web_recon_results": {},
"vulnerability_analysis": [],
"exploitation_attempts": [],
"ai_analysis": {}
}
try:
# Phase 1: Web Reconnaissance
logger.info("Phase 1: Web Reconnaissance (WebPentestAgent)")
web_recon_output = self.web_recon.analyze(target)
results["web_recon_results"] = web_recon_output
# Phase 2: Vulnerability Analysis (AI-powered)
logger.info("Phase 2: AI-powered Vulnerability Analysis")
# This part will be improved later with more detailed vulnerability detection in WebRecon
# For now, it will look for findings reported by WebRecon
potential_vulnerabilities = self._identify_potential_web_vulnerabilities(web_recon_output)
if potential_vulnerabilities:
results["vulnerability_analysis"] = potential_vulnerabilities
ai_vulnerability_analysis = self._ai_analyze_web_vulnerabilities(potential_vulnerabilities, target)
results["ai_analysis"]["vulnerability_insights"] = ai_vulnerability_analysis
else:
logger.info("No immediate web vulnerabilities identified by WebRecon.")
# Phase 3: Web Exploitation (Placeholder for now)
# This will integrate with exploitation tools later.
results["status"] = "completed"
logger.info("Web pentest phase completed")
except Exception as e:
logger.error(f"Error during web pentest: {e}")
results["status"] = "error"
results["error"] = str(e)
return results
def _identify_potential_web_vulnerabilities(self, web_recon_output: Dict) -> List[Dict]:
"""
Identifies potential web vulnerabilities based on WebRecon output.
This is a placeholder and will be enhanced as WebRecon improves.
"""
vulnerabilities = []
if "vulnerabilities" in web_recon_output:
vulnerabilities.extend(web_recon_output["vulnerabilities"])
return vulnerabilities
def _ai_analyze_web_vulnerabilities(self, vulnerabilities: List[Dict], target: str) -> Dict:
"""Uses AI to analyze identified web vulnerabilities."""
prompt = self.llm.get_prompt(
"web_recon",
"ai_analysis_user",
default=f"""
Analyze the following potential web vulnerabilities identified on {target} and provide insights:
Vulnerabilities: {json.dumps(vulnerabilities, indent=2)}
Provide:
1. Prioritized list of vulnerabilities
2. Recommended exploitation steps for each (if applicable)
3. Potential impact
4. Remediation suggestions
Response in JSON format with actionable recommendations.
"""
)
system_prompt = self.llm.get_prompt(
"web_recon",
"ai_analysis_system",
default="""You are an expert web penetration tester and security analyst.
Provide precise analysis of web vulnerabilities and practical advice for exploitation and remediation."""
)
try:
# Format the user prompt with recon_data
formatted_prompt = prompt.format(
target=target,
vulnerabilities_json=json.dumps(vulnerabilities, indent=2)
)
response = self.llm.generate(formatted_prompt, system_prompt)
return json.loads(response)
except Exception as e:
logger.error(f"AI web vulnerability analysis error: {e}")
return {"error": str(e), "raw_response": response if 'response' in locals() else None}