Files
OmniSafeBench-MM/models/google_model.py
Liao, Jie 04a1cbe8d1 refactor: consolidate duplicate code and fix deadlock bug
- Extract duplicate attack/defense config merging into _merge_component_configs()
- Extract duplicate lazy loading logic into _get_component()
- Move content policy detection to BaseModel base class
- Fix BatchSaveManager deadlock by splitting flush logic
- Add TypeError to ValueError conversion for consistent config errors
- Move _determine_load_model() to BaseComponent (explicit field only)
2026-01-23 12:55:34 +08:00

76 lines
2.5 KiB
Python

from typing import List
from .base_model import BaseModel
class GoogleModel(BaseModel):
"""Google model implementation using Google Generative AI API."""
default_output = "I'm sorry, but I cannot assist with that request."
# Google-specific content policy keywords
PROVIDER_SPECIFIC_KEYWORDS = [
"blocked",
]
def __init__(self, model_name: str, api_key: str, base_url: str = None) -> None:
super().__init__(model_name=model_name, api_key=api_key, base_url=base_url)
try:
from google import genai
except ImportError:
raise ImportError(
"Google Generative AI package is required for Gemini models. "
"Install it with: pip install google-generativeai"
)
self.model = genai.Client(api_key=api_key)
def _generate_single(
self,
messages: List[dict],
**kwargs,
) -> str:
"""Generate response for a single prompt."""
def _api_call():
# Create a copy of kwargs to avoid modifying the original
api_kwargs = kwargs.copy()
# Use provided model name or fall back to instance model_name
model = api_kwargs.pop("model", self.model_name)
try:
response = self.model.models.generate_content(
model=model, contents=messages, **api_kwargs
)
return response
except Exception as e:
if self._is_content_policy_rejection(e):
return self._handle_content_rejection()
raise
return self._retry_with_backoff(_api_call)
def _generate_stream(
self,
messages: List[dict],
**kwargs,
):
"""Generate streaming response for a single prompt."""
def _api_call():
# Create a copy of kwargs to avoid modifying the original
api_kwargs = kwargs.copy()
# Use provided model name or fall back to instance model_name
model = api_kwargs.pop("model", self.model_name)
# Gemini streaming API
response = self.model.models.generate_content(
model=model, contents=messages, stream=True, **api_kwargs
)
return response
try:
response = self._retry_with_backoff(_api_call)
for chunk in response:
if chunk.text:
yield chunk.text
except Exception:
yield self._handle_api_error()