Files
ScreenCoder_UI2Code/post-training/VLM-R1/run_scripts/run_grpo_rec_internvl.sh
2025-10-22 15:38:32 +08:00

58 lines
2.2 KiB
Bash

PROJECT_ROOT="$( cd "$( dirname "${BASH_SOURCE[0]}" )/.." && pwd )"
export REPO_HOME="${PROJECT_ROOT}"
echo "REPO_HOME: $REPO_HOME"
# on remote
data_paths="/training/shz/dataset/vlm-r1/rec_jsonsl_train/refcoco_train.jsonl:/training/shz/dataset/vlm-r1/rec_jsonsl_train/refcocop_train.jsonl:/training/shz/dataset/vlm-r1/rec_jsonsl_train/refcocog_train.jsonl"
image_folders="/training/shz/dataset/coco:/training/shz/dataset/coco:/training/shz/dataset/coco"
model_path="OpenGVLab/InternVL2_5-4B-MPO"
is_reward_customized_from_vlm_module=True
echo "data_paths: $data_paths"
echo "image_folders: $image_folders"
export EXP_NAME="InternVL2_5-4B_MPO-rec" # TODO: change this to your own experiment name
TASK_TYPE="rec"
cd ${REPO_HOME}/src/open-r1-multimodal
export DEBUG_MODE="true" # Enable Debug if you want to see the rollout of model during RL
# create the run directory and log file
mkdir -p ${REPO_HOME}/runs/${EXP_NAME}/log
export LOG_PATH="${REPO_HOME}/runs/${EXP_NAME}/log/debug_log.$(date +%Y-%m-%d-%H-%M-%S).txt"
# MAX_STEPS=1200 # TODO: change this to your own max steps
# export WANDB_DISABLED=true
# CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6
torchrun --nproc_per_node="8" \
--nnodes="1" \
--node_rank="0" \
--master_addr="127.0.0.1" \
--master_port="12349" \
src/open_r1/grpo_jsonl.py \
--use_vllm False \
--output_dir ${REPO_HOME}/checkpoints/rl/${EXP_NAME} \
--resume_from_checkpoint True \
--model_name_or_path $model_path \
--data_file_paths $data_paths \
--image_folders $image_folders \
--is_reward_customized_from_vlm_module $is_reward_customized_from_vlm_module \
--task_type $TASK_TYPE \
--max_anyres_num 6 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 2 \
--gradient_checkpointing true \
--logging_steps 1 \
--num_train_epochs 2 \
--bf16 \
--attn_implementation flash_attention_2 \
--run_name ${EXP_NAME} \
--data_seed 42 \
--save_steps 100 \
--num_generations 8 \
--max_completion_length 2048 \
--reward_funcs accuracy format \
--beta 0.04 \
--report_to wandb \
--dataset-name this_is_not_used \
--deepspeed ${REPO_HOME}/src/open-r1-multimodal/local_scripts/zero3.json \
echo "Training completed for ${EXP_NAME}"