mirror of
https://github.com/Shiva108/ai-llm-red-team-handbook.git
synced 2026-02-12 14:42:46 +00:00
- Extracted all code examples from handbook chapters - Organized into 15 attack categories - Created shared utilities (api_client, validators, logging, constants) - Added workflow orchestration scripts - Implemented install.sh for easy setup - Renamed all scripts to descriptive functional names - Added comprehensive README and documentation - Included pytest test suite and configuration
47 lines
1.1 KiB
Python
47 lines
1.1 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
User privacy protection
|
|
|
|
Source: Chapter_15_Data_Leakage_and_Extraction
|
|
Category: data_extraction
|
|
"""
|
|
|
|
import argparse
|
|
import sys
|
|
|
|
def protect_user_privacy(discovered_pii):
|
|
"""Ensure discovered PII is handled ethically"""
|
|
|
|
# Immediately redact
|
|
redacted = redact_pii(discovered_pii)
|
|
|
|
# Determine if notification required
|
|
if requires_notification(discovered_pii):
|
|
notify_affected_users(discovered_pii['users'])
|
|
|
|
# Document finding without PII
|
|
finding = {
|
|
'type': 'PII Leakage',
|
|
'severity': assess_severity(discovered_pii),
|
|
'evidence': redacted, # Only redacted version
|
|
'impact': 'User PII could be extracted',
|
|
'recommendations': generate_remediation_plan()
|
|
}
|
|
|
|
# Securely destroy original
|
|
secure_delete(discovered_pii)
|
|
|
|
return finding
|
|
|
|
|
|
def main():
|
|
"""Command-line interface."""
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument("--verbose", "-v", action="store_true", help="Verbose output")
|
|
args = parser.parse_args()
|
|
|
|
# TODO: Add main execution logic
|
|
pass
|
|
|
|
if __name__ == "__main__":
|
|
main() |