mirror of
https://github.com/Shiva108/ai-llm-red-team-handbook.git
synced 2026-02-12 22:52:48 +00:00
- Extracted all code examples from handbook chapters - Organized into 15 attack categories - Created shared utilities (api_client, validators, logging, constants) - Added workflow orchestration scripts - Implemented install.sh for easy setup - Renamed all scripts to descriptive functional names - Added comprehensive README and documentation - Included pytest test suite and configuration
44 lines
1.2 KiB
Python
44 lines
1.2 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Class Structure
|
|
|
|
Source: Chapter_24_Social_Engineering_LLMs
|
|
Category: social_engineering
|
|
"""
|
|
|
|
import argparse
|
|
import sys
|
|
|
|
class PhishingGenerator:
|
|
# Core phishing email generation engine
|
|
|
|
__init__(self, api_key, model):
|
|
# Initialize LLM client
|
|
# Define psychological triggers (urgency, authority, fear, etc.)
|
|
|
|
profile_target(self, target_info):
|
|
# Convert target data into structured profile
|
|
# Used for context in LLM prompt
|
|
|
|
generate_phishing_email(self, target_info, attack_vector, trigger):
|
|
# Main generation function
|
|
# Calls LLM with carefully crafted prompt
|
|
# Returns personalized phishing email
|
|
|
|
generate_spear_phishing_campaign(self, targets, attack_vector):
|
|
# Scale to multiple targets
|
|
# Each gets unique personalized email
|
|
# Demonstrates automation capability
|
|
|
|
|
|
def main():
|
|
"""Command-line interface."""
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument("--verbose", "-v", action="store_true", help="Verbose output")
|
|
args = parser.parse_args()
|
|
|
|
# TODO: Add main execution logic
|
|
pass
|
|
|
|
if __name__ == "__main__":
|
|
main() |