mirror of
https://github.com/Shiva108/ai-llm-red-team-handbook.git
synced 2026-02-12 22:52:48 +00:00
- Extracted all code examples from handbook chapters - Organized into 15 attack categories - Created shared utilities (api_client, validators, logging, constants) - Added workflow orchestration scripts - Implemented install.sh for easy setup - Renamed all scripts to descriptive functional names - Added comprehensive README and documentation - Included pytest test suite and configuration
33 lines
867 B
Python
33 lines
867 B
Python
#!/usr/bin/env python3
|
|
"""
|
|
generate_impersonation_message() Function
|
|
|
|
Source: Chapter_24_Social_Engineering_LLMs
|
|
Category: social_engineering
|
|
"""
|
|
|
|
import argparse
|
|
import sys
|
|
|
|
# Purpose: Create message matching target's style
|
|
# Input: Target name, role, style profile, objective
|
|
# Process
|
|
# 1. Build style description from profile
|
|
# 2. Construct LLM prompt with style requirements
|
|
# 3. Include attack objective naturally
|
|
# 4. Generate message matching all patterns
|
|
# Output: Convincing impersonation message
|
|
# Success rate: 80-90% fool recipients
|
|
|
|
|
|
def main():
|
|
"""Command-line interface."""
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument("--verbose", "-v", action="store_true", help="Verbose output")
|
|
args = parser.parse_args()
|
|
|
|
# TODO: Add main execution logic
|
|
pass
|
|
|
|
if __name__ == "__main__":
|
|
main() |