mirror of
https://github.com/Shiva108/ai-llm-red-team-handbook.git
synced 2026-02-12 22:52:48 +00:00
- Extracted all code examples from handbook chapters - Organized into 15 attack categories - Created shared utilities (api_client, validators, logging, constants) - Added workflow orchestration scripts - Implemented install.sh for easy setup - Renamed all scripts to descriptive functional names - Added comprehensive README and documentation - Included pytest test suite and configuration
30 lines
747 B
Python
30 lines
747 B
Python
#!/usr/bin/env python3
|
|
"""
|
|
42.2.2 The Fix: Split Context
|
|
|
|
Source: Chapter_42_Case_Studies_and_War_Stories
|
|
Category: utils
|
|
"""
|
|
|
|
import argparse
|
|
import sys
|
|
|
|
# Secure Implementation
|
|
def handle_offer(user_offer, vehicle_price):
|
|
if user_offer < vehicle_price * 0.9:
|
|
return "I cannot accept that offer. Shall I contact a human agent?"
|
|
# Only send to LLM if the offer is within a realistic range
|
|
return llm.generate(...)
|
|
|
|
|
|
def main():
|
|
"""Command-line interface."""
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument("--verbose", "-v", action="store_true", help="Verbose output")
|
|
args = parser.parse_args()
|
|
|
|
# TODO: Add main execution logic
|
|
pass
|
|
|
|
if __name__ == "__main__":
|
|
main() |