import requests import json from sklearn.cluster import DBSCAN from geopy.distance import great_circle from geopy.point import Point import numpy as np # Set up the Overpass API query # TODO: remove the bbox query = """ [out:json]; node["man_made"="surveillance"]["surveillance:type"="ALPR"]; out body; """ # Request data from Overpass API print("Requesting data from Overpass API...") url = "http://overpass-api.de/api/interpreter" response = requests.get(url, params={'data': query}, headers={'User-Agent': 'DeFlock/1.0'}) data = response.json() print("Data received. Parsing nodes...") # Parse nodes and extract lat/lon for clustering coordinates = [] node_ids = [] for element in data['elements']: if element['type'] == 'node': coordinates.append([element['lat'], element['lon']]) node_ids.append(element['id']) # Convert coordinates to NumPy array for DBSCAN coordinates = np.array(coordinates) # Define the clustering radius (10 miles in meters) radius_miles = 50 radius_km = radius_miles * 1.60934 # 1 mile = 1.60934 km radius_in_radians = radius_km / 6371.0 # Earth's radius in km # Perform DBSCAN clustering db = DBSCAN(eps=radius_in_radians, min_samples=1, algorithm='ball_tree', metric='haversine').fit(np.radians(coordinates)) labels = db.labels_ # Prepare clusters and calculate centroids clusters = {} for label in set(labels): cluster_points = coordinates[labels == label] centroid = np.mean(cluster_points, axis=0) first_node_id = node_ids[labels.tolist().index(label)] # Store in clusters dict with centroid and first node ID clusters[label] = { "lat": centroid[0], "lon": centroid[1], "id": first_node_id } # Save clusters to JSON output = {"clusters": list(clusters.values())} with open("alpr_clusters.json", "w") as outfile: json.dump(output, outfile, indent=2) print("Clustering complete. Results saved to alpr_clusters.json.")