* feat: seed governance config and responses routing
* Add env-configurable timeout for proxy providers
* Integrate LiteLLM OTEL collector and update docs
* Make .env.litellm optional for LiteLLM proxy
* Add LiteLLM proxy integration with model-agnostic virtual keys
Changes:
- Bootstrap generates 3 virtual keys with individual budgets (CLI: $100, Task-Agent: $25, Cognee: $50)
- Task-agent loads config at runtime via entrypoint script to wait for bootstrap completion
- All keys are model-agnostic by default (no LITELLM_DEFAULT_MODELS restrictions)
- Bootstrap handles database/env mismatch after docker prune by deleting stale aliases
- CLI and Cognee configured to use LiteLLM proxy with virtual keys
- Added comprehensive documentation in volumes/env/README.md
Technical details:
- task-agent entrypoint waits for keys in .env file before starting uvicorn
- Bootstrap creates/updates TASK_AGENT_API_KEY, COGNEE_API_KEY, and OPENAI_API_KEY
- Removed hardcoded API keys from docker-compose.yml
- All services route through http://localhost:10999 proxy
Generated with Claude Code https://claude.com/claude-code
Co-Authored-By: Claude <noreply@anthropic.com>
* Fix CLI not loading virtual keys from global .env
Project .env files with empty OPENAI_API_KEY values were overriding
the global virtual keys. Updated _load_env_file_if_exists to only
override with non-empty values.
Generated with Claude Code https://claude.com/claude-code
Co-Authored-By: Claude <noreply@anthropic.com>
* Fix agent executor not passing API key to LiteLLM
The agent was initializing LiteLlm without api_key or api_base,
causing authentication errors when using the LiteLLM proxy. Now
reads from OPENAI_API_KEY/LLM_API_KEY and LLM_ENDPOINT environment
variables and passes them to LiteLlm constructor.
Generated with Claude Code https://claude.com/claude-code
Co-Authored-By: Claude <noreply@anthropic.com>
* Auto-populate project .env with virtual key from global config
When running 'ff init', the command now checks for a global
volumes/env/.env file and automatically uses the OPENAI_API_KEY
virtual key if found. This ensures projects work with LiteLLM
proxy out of the box without manual key configuration.
Generated with Claude Code https://claude.com/claude-code
Co-Authored-By: Claude <noreply@anthropic.com>
* docs: Update README with LiteLLM configuration instructions
Add note about LITELLM_GEMINI_API_KEY configuration and clarify that OPENAI_API_KEY default value should not be changed as it's used for the LLM proxy.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
* Refactor workflow parameters to use JSON Schema defaults
Consolidates parameter defaults into JSON Schema format, removing the separate default_parameters field. Adds extract_defaults_from_json_schema() helper to extract defaults from the standard schema structure. Updates LiteLLM proxy config to use LITELLM_OPENAI_API_KEY environment variable.
* Remove .env.example from task_agent
* Fix MDX syntax error in llm-proxy.md
* fix: apply default parameters from metadata.yaml automatically
Fixed TemporalManager.run_workflow() to correctly apply default parameter
values from workflow metadata.yaml files when parameters are not provided
by the caller.
Previous behavior:
- When workflow_params was empty {}, the condition
`if workflow_params and 'parameters' in metadata` would fail
- Parameters would not be extracted from schema, resulting in workflows
receiving only target_id with no other parameters
New behavior:
- Removed the `workflow_params and` requirement from the condition
- Now explicitly checks for defaults in parameter spec
- Applies defaults from metadata.yaml automatically when param not provided
- Workflows receive all parameters with proper fallback:
provided value > metadata default > None
This makes metadata.yaml the single source of truth for parameter defaults,
removing the need for workflows to implement defensive default handling.
Affected workflows:
- llm_secret_detection (was failing with KeyError)
- All other workflows now benefit from automatic default application
---------
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: tduhamel42 <tduhamel@fuzzinglabs.com>
Implements Issue #5 - Python SAST workflow that combines:
- Dependency scanning (pip-audit) for CVE detection
- Security linting (Bandit) for vulnerability patterns
- Type checking (Mypy) for type safety issues
## Changes
**New Modules:**
- `DependencyScanner`: Scans Python dependencies for known CVEs using pip-audit
- `BanditAnalyzer`: Analyzes Python code for security issues using Bandit
- `MypyAnalyzer`: Checks Python code for type safety issues using Mypy
**New Workflow:**
- `python_sast`: Temporal workflow that orchestrates all three SAST tools
- Runs tools in parallel for fast feedback (3-5 min vs hours for fuzzing)
- Generates unified SARIF report with findings from all tools
- Supports configurable severity/confidence thresholds
**Updates:**
- Added SAST dependencies to Python worker (bandit, pip-audit, mypy)
- Updated module __init__.py files to export new analyzers
- Added type_errors.py test file to vulnerable_app for Mypy validation
## Testing
Workflow tested successfully on vulnerable_app:
- ✅ Bandit: Detected 9 security issues (command injection, unsafe functions)
- ✅ Mypy: Detected 5 type errors
- ✅ DependencyScanner: Ran successfully (no CVEs in test dependencies)
- ✅ SARIF export: Generated valid SARIF with 14 total findings
Add three production-ready secret detection workflows with full benchmarking infrastructure:
**New Workflows:**
- gitleaks_detection: Pattern-based secret scanning (13/32 benchmark secrets)
- trufflehog_detection: Entropy-based detection with verification (1/32 benchmark secrets)
- llm_secret_detection: AI-powered semantic analysis (32/32 benchmark secrets - 100% recall)
**Benchmarking Infrastructure:**
- Ground truth dataset with 32 documented secrets (12 Easy, 10 Medium, 10 Hard)
- Automated comparison tools for precision/recall testing
- SARIF output format for all workflows
- Performance metrics and tool comparison reports
**Fixes:**
- Set gitleaks default to no_git=True for uploaded directories
- Update documentation with correct secret counts and workflow names
- Temporarily deactivate AI agent command
- Clean up deprecated test files and GitGuardian workflow
**Testing:**
All workflows verified on secret_detection_benchmark and vulnerable_app test projects.
Workers healthy and system fully functional.
LLM Analysis Workflow:
- Add llm_analyzer module for AI-powered code security analysis
- Add llm_analysis workflow with SARIF output support
- Mount AI module in Python worker for A2A wrapper access
- Add a2a-sdk dependency to Python worker requirements
- Fix workflow parameter ordering in Temporal manager
Ruff Linter Fixes:
- Fix bare except clauses (E722) across AI and CLI modules
- Add noqa comments for intentional late imports (E402)
- Replace undefined get_ai_status_async with TODO placeholder
- Remove unused imports and variables
- Remove container diagnostics display from exception handler
MCP Configuration:
- Reactivate FUZZFORGE_MCP_URL with default value
- Set default MCP URL to http://localhost:8010/mcp in init