Files
Songbird99 f77c3ff1e9 Feature/litellm proxy (#27)
* feat: seed governance config and responses routing

* Add env-configurable timeout for proxy providers

* Integrate LiteLLM OTEL collector and update docs

* Make .env.litellm optional for LiteLLM proxy

* Add LiteLLM proxy integration with model-agnostic virtual keys

Changes:
- Bootstrap generates 3 virtual keys with individual budgets (CLI: $100, Task-Agent: $25, Cognee: $50)
- Task-agent loads config at runtime via entrypoint script to wait for bootstrap completion
- All keys are model-agnostic by default (no LITELLM_DEFAULT_MODELS restrictions)
- Bootstrap handles database/env mismatch after docker prune by deleting stale aliases
- CLI and Cognee configured to use LiteLLM proxy with virtual keys
- Added comprehensive documentation in volumes/env/README.md

Technical details:
- task-agent entrypoint waits for keys in .env file before starting uvicorn
- Bootstrap creates/updates TASK_AGENT_API_KEY, COGNEE_API_KEY, and OPENAI_API_KEY
- Removed hardcoded API keys from docker-compose.yml
- All services route through http://localhost:10999 proxy

* Fix CLI not loading virtual keys from global .env

Project .env files with empty OPENAI_API_KEY values were overriding
the global virtual keys. Updated _load_env_file_if_exists to only
override with non-empty values.

* Fix agent executor not passing API key to LiteLLM

The agent was initializing LiteLlm without api_key or api_base,
causing authentication errors when using the LiteLLM proxy. Now
reads from OPENAI_API_KEY/LLM_API_KEY and LLM_ENDPOINT environment
variables and passes them to LiteLlm constructor.

* Auto-populate project .env with virtual key from global config

When running 'ff init', the command now checks for a global
volumes/env/.env file and automatically uses the OPENAI_API_KEY
virtual key if found. This ensures projects work with LiteLLM
proxy out of the box without manual key configuration.

* docs: Update README with LiteLLM configuration instructions

Add note about LITELLM_GEMINI_API_KEY configuration and clarify that OPENAI_API_KEY default value should not be changed as it's used for the LLM proxy.

* Refactor workflow parameters to use JSON Schema defaults

Consolidates parameter defaults into JSON Schema format, removing the separate default_parameters field. Adds extract_defaults_from_json_schema() helper to extract defaults from the standard schema structure. Updates LiteLLM proxy config to use LITELLM_OPENAI_API_KEY environment variable.

* Remove .env.example from task_agent

* Fix MDX syntax error in llm-proxy.md

* fix: apply default parameters from metadata.yaml automatically

Fixed TemporalManager.run_workflow() to correctly apply default parameter
values from workflow metadata.yaml files when parameters are not provided
by the caller.

Previous behavior:
- When workflow_params was empty {}, the condition
  `if workflow_params and 'parameters' in metadata` would fail
- Parameters would not be extracted from schema, resulting in workflows
  receiving only target_id with no other parameters

New behavior:
- Removed the `workflow_params and` requirement from the condition
- Now explicitly checks for defaults in parameter spec
- Applies defaults from metadata.yaml automatically when param not provided
- Workflows receive all parameters with proper fallback:
  provided value > metadata default > None

This makes metadata.yaml the single source of truth for parameter defaults,
removing the need for workflows to implement defensive default handling.

Affected workflows:
- llm_secret_detection (was failing with KeyError)
- All other workflows now benefit from automatic default application

Co-authored-by: tduhamel42 <tduhamel@fuzzinglabs.com>
2025-11-04 14:04:10 +01:00

255 lines
9.2 KiB
Python

"""Session state utilities for the LiteLLM hot-swap agent."""
from __future__ import annotations
from dataclasses import dataclass
import os
from typing import Any, Mapping, MutableMapping, Optional
import httpx
from .config import (
DEFAULT_MODEL,
DEFAULT_PROVIDER,
PROXY_BASE_URL,
STATE_MODEL_KEY,
STATE_PROMPT_KEY,
STATE_PROVIDER_KEY,
)
@dataclass(slots=True)
class HotSwapState:
"""Lightweight view of the hot-swap session state."""
model: str = DEFAULT_MODEL
provider: Optional[str] = None
prompt: Optional[str] = None
@classmethod
def from_mapping(cls, mapping: Optional[Mapping[str, Any]]) -> "HotSwapState":
if not mapping:
return cls()
raw_model = mapping.get(STATE_MODEL_KEY, DEFAULT_MODEL)
raw_provider = mapping.get(STATE_PROVIDER_KEY)
raw_prompt = mapping.get(STATE_PROMPT_KEY)
model = raw_model.strip() if isinstance(raw_model, str) else DEFAULT_MODEL
provider = raw_provider.strip() if isinstance(raw_provider, str) else None
if not provider and DEFAULT_PROVIDER:
provider = DEFAULT_PROVIDER.strip() or None
prompt = raw_prompt.strip() if isinstance(raw_prompt, str) else None
return cls(
model=model or DEFAULT_MODEL,
provider=provider or None,
prompt=prompt or None,
)
def persist(self, store: MutableMapping[str, object]) -> None:
store[STATE_MODEL_KEY] = self.model
if self.provider:
store[STATE_PROVIDER_KEY] = self.provider
else:
store[STATE_PROVIDER_KEY] = None
store[STATE_PROMPT_KEY] = self.prompt
def describe(self) -> str:
prompt_value = self.prompt if self.prompt else "(default prompt)"
provider_value = self.provider if self.provider else "(default provider)"
return (
"📊 Current Configuration\n"
"━━━━━━━━━━━━━━━━━━━━━━\n"
f"Model: {self.model}\n"
f"Provider: {provider_value}\n"
f"System Prompt: {prompt_value}\n"
"━━━━━━━━━━━━━━━━━━━━━━"
)
def instantiate_llm(self):
"""Create a LiteLlm instance for the current state."""
from google.adk.models.lite_llm import LiteLlm # Lazy import to avoid cycle
from google.adk.models.lite_llm import LiteLLMClient
from litellm.types.utils import Choices, Message, ModelResponse, Usage
kwargs = {"model": self.model}
if self.provider:
kwargs["custom_llm_provider"] = self.provider
if PROXY_BASE_URL:
provider = (self.provider or DEFAULT_PROVIDER or "").lower()
if provider and provider != "openai":
kwargs["api_base"] = f"{PROXY_BASE_URL.rstrip('/')}/{provider}"
else:
kwargs["api_base"] = PROXY_BASE_URL
kwargs.setdefault("api_key", os.environ.get("TASK_AGENT_API_KEY") or os.environ.get("OPENAI_API_KEY"))
provider = (self.provider or DEFAULT_PROVIDER or "").lower()
model_suffix = self.model.split("/", 1)[-1]
use_responses = provider == "openai" and (
model_suffix.startswith("gpt-5") or model_suffix.startswith("o1")
)
if use_responses:
kwargs.setdefault("use_responses_api", True)
llm = LiteLlm(**kwargs)
if use_responses and PROXY_BASE_URL:
class _ResponsesAwareClient(LiteLLMClient):
def __init__(self, base_client: LiteLLMClient, api_base: str, api_key: str):
self._base_client = base_client
self._api_base = api_base.rstrip("/")
self._api_key = api_key
async def acompletion(self, model, messages, tools, **kwargs): # type: ignore[override]
use_responses_api = kwargs.pop("use_responses_api", False)
if not use_responses_api:
return await self._base_client.acompletion(
model=model,
messages=messages,
tools=tools,
**kwargs,
)
resolved_model = model
if "/" not in resolved_model:
resolved_model = f"openai/{resolved_model}"
payload = {
"model": resolved_model,
"input": _messages_to_responses_input(messages),
}
timeout = kwargs.get("timeout", 60)
headers = {
"Authorization": f"Bearer {self._api_key}",
"Content-Type": "application/json",
}
async with httpx.AsyncClient(timeout=timeout) as client:
response = await client.post(
f"{self._api_base}/v1/responses",
json=payload,
headers=headers,
)
try:
response.raise_for_status()
except httpx.HTTPStatusError as exc:
text = exc.response.text
raise RuntimeError(
f"LiteLLM responses request failed: {text}"
) from exc
data = response.json()
text_output = _extract_output_text(data)
usage = data.get("usage", {})
return ModelResponse(
id=data.get("id"),
model=model,
choices=[
Choices(
finish_reason="stop",
index=0,
message=Message(role="assistant", content=text_output),
provider_specific_fields={"bifrost_response": data},
)
],
usage=Usage(
prompt_tokens=usage.get("input_tokens"),
completion_tokens=usage.get("output_tokens"),
reasoning_tokens=usage.get("output_tokens_details", {}).get(
"reasoning_tokens"
),
total_tokens=usage.get("total_tokens"),
),
)
llm.llm_client = _ResponsesAwareClient(
llm.llm_client,
PROXY_BASE_URL,
os.environ.get("TASK_AGENT_API_KEY") or os.environ.get("OPENAI_API_KEY", ""),
)
return llm
@property
def display_model(self) -> str:
if self.provider:
return f"{self.provider}/{self.model}"
return self.model
def apply_state_to_agent(invocation_context, state: HotSwapState) -> None:
"""Update the provided agent with a LiteLLM instance matching state."""
agent = invocation_context.agent
agent.model = state.instantiate_llm()
def _messages_to_responses_input(messages: list[dict[str, Any]]) -> list[dict[str, Any]]:
inputs: list[dict[str, Any]] = []
for message in messages:
role = message.get("role", "user")
content = message.get("content", "")
text_segments: list[str] = []
if isinstance(content, list):
for item in content:
if isinstance(item, dict):
text = item.get("text") or item.get("content")
if text:
text_segments.append(str(text))
elif isinstance(item, str):
text_segments.append(item)
elif isinstance(content, str):
text_segments.append(content)
text = "\n".join(segment.strip() for segment in text_segments if segment)
if not text:
continue
entry_type = "input_text"
if role == "assistant":
entry_type = "output_text"
inputs.append(
{
"role": role,
"content": [
{
"type": entry_type,
"text": text,
}
],
}
)
if not inputs:
inputs.append(
{
"role": "user",
"content": [
{
"type": "input_text",
"text": "",
}
],
}
)
return inputs
def _extract_output_text(response_json: dict[str, Any]) -> str:
outputs = response_json.get("output", [])
collected: list[str] = []
for item in outputs:
if isinstance(item, dict) and item.get("type") == "message":
for part in item.get("content", []):
if isinstance(part, dict) and part.get("type") == "output_text":
text = part.get("text", "")
if text:
collected.append(str(text))
return "\n\n".join(collected).strip()