mirror of
https://github.com/FuzzingLabs/fuzzforge_ai.git
synced 2026-02-13 21:12:48 +00:00
* feat: Complete migration from Prefect to Temporal BREAKING CHANGE: Replaces Prefect workflow orchestration with Temporal ## Major Changes - Replace Prefect with Temporal for workflow orchestration - Implement vertical worker architecture (rust, android) - Replace Docker registry with MinIO for unified storage - Refactor activities to be co-located with workflows - Update all API endpoints for Temporal compatibility ## Infrastructure - New: docker-compose.temporal.yaml (Temporal + MinIO + workers) - New: workers/ directory with rust and android vertical workers - New: backend/src/temporal/ (manager, discovery) - New: backend/src/storage/ (S3-cached storage with MinIO) - New: backend/toolbox/common/ (shared storage activities) - Deleted: docker-compose.yaml (old Prefect setup) - Deleted: backend/src/core/prefect_manager.py - Deleted: backend/src/services/prefect_stats_monitor.py - Deleted: Docker registry and insecure-registries requirement ## Workflows - Migrated: security_assessment workflow to Temporal - New: rust_test workflow (example/test workflow) - Deleted: secret_detection_scan (Prefect-based, to be reimplemented) - Activities now co-located with workflows for independent testing ## API Changes - Updated: backend/src/api/workflows.py (Temporal submission) - Updated: backend/src/api/runs.py (Temporal status/results) - Updated: backend/src/main.py (727 lines, TemporalManager integration) - Updated: All 16 MCP tools to use TemporalManager ## Testing - ✅ All services healthy (Temporal, PostgreSQL, MinIO, workers, backend) - ✅ All API endpoints functional - ✅ End-to-end workflow test passed (72 findings from vulnerable_app) - ✅ MinIO storage integration working (target upload/download, results) - ✅ Worker activity discovery working (6 activities registered) - ✅ Tarball extraction working - ✅ SARIF report generation working ## Documentation - ARCHITECTURE.md: Complete Temporal architecture documentation - QUICKSTART_TEMPORAL.md: Getting started guide - MIGRATION_DECISION.md: Why we chose Temporal over Prefect - IMPLEMENTATION_STATUS.md: Migration progress tracking - workers/README.md: Worker development guide ## Dependencies - Added: temporalio>=1.6.0 - Added: boto3>=1.34.0 (MinIO S3 client) - Removed: prefect>=3.4.18 * feat: Add Python fuzzing vertical with Atheris integration This commit implements a complete Python fuzzing workflow using Atheris: ## Python Worker (workers/python/) - Dockerfile with Python 3.11, Atheris, and build tools - Generic worker.py for dynamic workflow discovery - requirements.txt with temporalio, boto3, atheris dependencies - Added to docker-compose.temporal.yaml with dedicated cache volume ## AtherisFuzzer Module (backend/toolbox/modules/fuzzer/) - Reusable module extending BaseModule - Auto-discovers fuzz targets (fuzz_*.py, *_fuzz.py, fuzz_target.py) - Recursive search to find targets in nested directories - Dynamically loads TestOneInput() function - Configurable max_iterations and timeout - Real-time stats callback support for live monitoring - Returns findings as ModuleFinding objects ## Atheris Fuzzing Workflow (backend/toolbox/workflows/atheris_fuzzing/) - Temporal workflow for orchestrating fuzzing - Downloads user code from MinIO - Executes AtherisFuzzer module - Uploads results to MinIO - Cleans up cache after execution - metadata.yaml with vertical: python for routing ## Test Project (test_projects/python_fuzz_waterfall/) - Demonstrates stateful waterfall vulnerability - main.py with check_secret() that leaks progress - fuzz_target.py with Atheris TestOneInput() harness - Complete README with usage instructions ## Backend Fixes - Fixed parameter merging in REST API endpoints (workflows.py) - Changed workflow parameter passing from positional args to kwargs (manager.py) - Default parameters now properly merged with user parameters ## Testing ✅ Worker discovered AtherisFuzzingWorkflow ✅ Workflow executed end-to-end successfully ✅ Fuzz target auto-discovered in nested directories ✅ Atheris ran 100,000 iterations ✅ Results uploaded and cache cleaned * chore: Complete Temporal migration with updated CLI/SDK/docs This commit includes all remaining Temporal migration changes: ## CLI Updates (cli/) - Updated workflow execution commands for Temporal - Enhanced error handling and exceptions - Updated dependencies in uv.lock ## SDK Updates (sdk/) - Client methods updated for Temporal workflows - Updated models for new workflow execution - Updated dependencies in uv.lock ## Documentation Updates (docs/) - Architecture documentation for Temporal - Workflow concept documentation - Resource management documentation (new) - Debugging guide (new) - Updated tutorials and how-to guides - Troubleshooting updates ## README Updates - Main README with Temporal instructions - Backend README - CLI README - SDK README ## Other - Updated IMPLEMENTATION_STATUS.md - Removed old vulnerable_app.tar.gz These changes complete the Temporal migration and ensure the CLI/SDK work correctly with the new backend. * fix: Use positional args instead of kwargs for Temporal workflows The Temporal Python SDK's start_workflow() method doesn't accept a 'kwargs' parameter. Workflows must receive parameters as positional arguments via the 'args' parameter. Changed from: args=workflow_args # Positional arguments This fixes the error: TypeError: Client.start_workflow() got an unexpected keyword argument 'kwargs' Workflows now correctly receive parameters in order: - security_assessment: [target_id, scanner_config, analyzer_config, reporter_config] - atheris_fuzzing: [target_id, target_file, max_iterations, timeout_seconds] - rust_test: [target_id, test_message] * fix: Filter metadata-only parameters from workflow arguments SecurityAssessmentWorkflow was receiving 7 arguments instead of 2-5. The issue was that target_path and volume_mode from default_parameters were being passed to the workflow, when they should only be used by the system for configuration. Now filters out metadata-only parameters (target_path, volume_mode) before passing arguments to workflow execution. * refactor: Remove Prefect leftovers and volume mounting legacy Complete cleanup of Prefect migration artifacts: Backend: - Delete registry.py and workflow_discovery.py (Prefect-specific files) - Remove Docker validation from setup.py (no longer needed) - Remove ResourceLimits and VolumeMount models - Remove target_path and volume_mode from WorkflowSubmission - Remove supported_volume_modes from API and discovery - Clean up metadata.yaml files (remove volume/path fields) - Simplify parameter filtering in manager.py SDK: - Remove volume_mode parameter from client methods - Remove ResourceLimits and VolumeMount models - Remove Prefect error patterns from docker_logs.py - Clean up WorkflowSubmission and WorkflowMetadata models CLI: - Remove Volume Modes display from workflow info All removed features are Prefect-specific or Docker volume mounting artifacts. Temporal workflows use MinIO storage exclusively. * feat: Add comprehensive test suite and benchmark infrastructure - Add 68 unit tests for fuzzer, scanner, and analyzer modules - Implement pytest-based test infrastructure with fixtures - Add 6 performance benchmarks with category-specific thresholds - Configure GitHub Actions for automated testing and benchmarking - Add test and benchmark documentation Test coverage: - AtherisFuzzer: 8 tests - CargoFuzzer: 14 tests - FileScanner: 22 tests - SecurityAnalyzer: 24 tests All tests passing (68/68) All benchmarks passing (6/6) * fix: Resolve all ruff linting violations across codebase Fixed 27 ruff violations in 12 files: - Removed unused imports (Depends, Dict, Any, Optional, etc.) - Fixed undefined workflow_info variable in workflows.py - Removed dead code with undefined variables in atheris_fuzzer.py - Changed f-string to regular string where no placeholders used All files now pass ruff checks for CI/CD compliance. * fix: Configure CI for unit tests only - Renamed docker-compose.temporal.yaml → docker-compose.yml for CI compatibility - Commented out integration-tests job (no integration tests yet) - Updated test-summary to only depend on lint and unit-tests CI will now run successfully with 68 unit tests. Integration tests can be added later. * feat: Add CI/CD integration with ephemeral deployment model Implements comprehensive CI/CD support for FuzzForge with on-demand worker management: **Worker Management (v0.7.0)** - Add WorkerManager for automatic worker lifecycle control - Auto-start workers from stopped state when workflows execute - Auto-stop workers after workflow completion - Health checks and startup timeout handling (90s default) **CI/CD Features** - `--fail-on` flag: Fail builds based on SARIF severity levels (error/warning/note/info) - `--export-sarif` flag: Export findings in SARIF 2.1.0 format - `--auto-start`/`--auto-stop` flags: Control worker lifecycle - Exit code propagation: Returns 1 on blocking findings, 0 on success **Exit Code Fix** - Add `except typer.Exit: raise` handlers at 3 critical locations - Move worker cleanup to finally block for guaranteed execution - Exit codes now propagate correctly even when build fails **CI Scripts & Examples** - ci-start.sh: Start FuzzForge services with health checks - ci-stop.sh: Clean shutdown with volume preservation option - GitHub Actions workflow example (security-scan.yml) - GitLab CI pipeline example (.gitlab-ci.example.yml) - docker-compose.ci.yml: CI-optimized compose file with profiles **OSS-Fuzz Integration** - New ossfuzz_campaign workflow for running OSS-Fuzz projects - OSS-Fuzz worker with Docker-in-Docker support - Configurable campaign duration and project selection **Documentation** - Comprehensive CI/CD integration guide (docs/how-to/cicd-integration.md) - Updated architecture docs with worker lifecycle details - Updated workspace isolation documentation - CLI README with worker management examples **SDK Enhancements** - Add get_workflow_worker_info() endpoint - Worker vertical metadata in workflow responses **Testing** - All workflows tested: security_assessment, atheris_fuzzing, secret_detection, cargo_fuzzing - All monitoring commands tested: stats, crashes, status, finding - Full CI pipeline simulation verified - Exit codes verified for success/failure scenarios Ephemeral CI/CD model: ~3-4GB RAM, ~60-90s startup, runs entirely in CI containers. * fix: Resolve ruff linting violations in CI/CD code - Remove unused variables (run_id, defaults, result) - Remove unused imports - Fix f-string without placeholders All CI/CD integration files now pass ruff checks.
315 lines
10 KiB
Python
315 lines
10 KiB
Python
"""
|
|
File Scanner Module - Scans and enumerates files in the workspace
|
|
"""
|
|
|
|
# Copyright (c) 2025 FuzzingLabs
|
|
#
|
|
# Licensed under the Business Source License 1.1 (BSL). See the LICENSE file
|
|
# at the root of this repository for details.
|
|
#
|
|
# After the Change Date (four years from publication), this version of the
|
|
# Licensed Work will be made available under the Apache License, Version 2.0.
|
|
# See the LICENSE-APACHE file or http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Additional attribution and requirements are provided in the NOTICE file.
|
|
|
|
import logging
|
|
import mimetypes
|
|
from pathlib import Path
|
|
from typing import Dict, Any
|
|
import hashlib
|
|
|
|
try:
|
|
from toolbox.modules.base import BaseModule, ModuleMetadata, ModuleResult
|
|
except ImportError:
|
|
try:
|
|
from modules.base import BaseModule, ModuleMetadata, ModuleResult
|
|
except ImportError:
|
|
from src.toolbox.modules.base import BaseModule, ModuleMetadata, ModuleResult
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class FileScanner(BaseModule):
|
|
"""
|
|
Scans files in the mounted workspace and collects information.
|
|
|
|
This module:
|
|
- Enumerates files based on patterns
|
|
- Detects file types
|
|
- Calculates file hashes
|
|
- Identifies potentially sensitive files
|
|
"""
|
|
|
|
def get_metadata(self) -> ModuleMetadata:
|
|
"""Get module metadata"""
|
|
return ModuleMetadata(
|
|
name="file_scanner",
|
|
version="1.0.0",
|
|
description="Scans and enumerates files in the workspace",
|
|
author="FuzzForge Team",
|
|
category="scanner",
|
|
tags=["files", "enumeration", "discovery"],
|
|
input_schema={
|
|
"patterns": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": "File patterns to scan (e.g., ['*.py', '*.js'])",
|
|
"default": ["*"]
|
|
},
|
|
"max_file_size": {
|
|
"type": "integer",
|
|
"description": "Maximum file size to scan in bytes",
|
|
"default": 10485760 # 10MB
|
|
},
|
|
"check_sensitive": {
|
|
"type": "boolean",
|
|
"description": "Check for sensitive file patterns",
|
|
"default": True
|
|
},
|
|
"calculate_hashes": {
|
|
"type": "boolean",
|
|
"description": "Calculate SHA256 hashes for files",
|
|
"default": False
|
|
}
|
|
},
|
|
output_schema={
|
|
"findings": {
|
|
"type": "array",
|
|
"description": "List of discovered files with metadata"
|
|
}
|
|
},
|
|
requires_workspace=True
|
|
)
|
|
|
|
def validate_config(self, config: Dict[str, Any]) -> bool:
|
|
"""Validate module configuration"""
|
|
patterns = config.get("patterns", ["*"])
|
|
if not isinstance(patterns, list):
|
|
raise ValueError("patterns must be a list")
|
|
|
|
max_size = config.get("max_file_size", 10485760)
|
|
if not isinstance(max_size, int) or max_size <= 0:
|
|
raise ValueError("max_file_size must be a positive integer")
|
|
|
|
return True
|
|
|
|
async def execute(self, config: Dict[str, Any], workspace: Path) -> ModuleResult:
|
|
"""
|
|
Execute the file scanning module.
|
|
|
|
Args:
|
|
config: Module configuration
|
|
workspace: Path to the workspace directory
|
|
|
|
Returns:
|
|
ModuleResult with file findings
|
|
"""
|
|
self.start_timer()
|
|
self.validate_workspace(workspace)
|
|
self.validate_config(config)
|
|
|
|
findings = []
|
|
file_count = 0
|
|
total_size = 0
|
|
file_types = {}
|
|
|
|
# Get configuration
|
|
patterns = config.get("patterns", ["*"])
|
|
max_file_size = config.get("max_file_size", 10485760)
|
|
check_sensitive = config.get("check_sensitive", True)
|
|
calculate_hashes = config.get("calculate_hashes", False)
|
|
|
|
logger.info(f"Scanning workspace with patterns: {patterns}")
|
|
|
|
try:
|
|
# Scan for each pattern
|
|
for pattern in patterns:
|
|
for file_path in workspace.rglob(pattern):
|
|
if not file_path.is_file():
|
|
continue
|
|
|
|
file_count += 1
|
|
relative_path = file_path.relative_to(workspace)
|
|
|
|
# Get file stats
|
|
try:
|
|
stats = file_path.stat()
|
|
file_size = stats.st_size
|
|
total_size += file_size
|
|
|
|
# Skip large files
|
|
if file_size > max_file_size:
|
|
logger.warning(f"Skipping large file: {relative_path} ({file_size} bytes)")
|
|
continue
|
|
|
|
# Detect file type
|
|
file_type = self._detect_file_type(file_path)
|
|
if file_type not in file_types:
|
|
file_types[file_type] = 0
|
|
file_types[file_type] += 1
|
|
|
|
# Check for sensitive files
|
|
if check_sensitive and self._is_sensitive_file(file_path):
|
|
findings.append(self.create_finding(
|
|
title=f"Potentially sensitive file: {relative_path.name}",
|
|
description=f"Found potentially sensitive file at {relative_path}",
|
|
severity="medium",
|
|
category="sensitive_file",
|
|
file_path=str(relative_path),
|
|
metadata={
|
|
"file_size": file_size,
|
|
"file_type": file_type
|
|
}
|
|
))
|
|
|
|
# Calculate hash if requested
|
|
file_hash = None
|
|
if calculate_hashes and file_size < 1048576: # Only hash files < 1MB
|
|
file_hash = self._calculate_hash(file_path)
|
|
|
|
# Create informational finding for each file
|
|
findings.append(self.create_finding(
|
|
title=f"File discovered: {relative_path.name}",
|
|
description=f"File: {relative_path}",
|
|
severity="info",
|
|
category="file_enumeration",
|
|
file_path=str(relative_path),
|
|
metadata={
|
|
"file_size": file_size,
|
|
"file_type": file_type,
|
|
"file_hash": file_hash
|
|
}
|
|
))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error processing file {relative_path}: {e}")
|
|
|
|
# Create summary
|
|
summary = {
|
|
"total_files": file_count,
|
|
"total_size_bytes": total_size,
|
|
"file_types": file_types,
|
|
"patterns_scanned": patterns
|
|
}
|
|
|
|
return self.create_result(
|
|
findings=findings,
|
|
status="success",
|
|
summary=summary,
|
|
metadata={
|
|
"workspace": str(workspace),
|
|
"config": config
|
|
}
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"File scanner failed: {e}")
|
|
return self.create_result(
|
|
findings=findings,
|
|
status="failed",
|
|
error=str(e)
|
|
)
|
|
|
|
def _detect_file_type(self, file_path: Path) -> str:
|
|
"""
|
|
Detect the type of a file.
|
|
|
|
Args:
|
|
file_path: Path to the file
|
|
|
|
Returns:
|
|
File type string
|
|
"""
|
|
# Try to determine from extension
|
|
mime_type, _ = mimetypes.guess_type(str(file_path))
|
|
if mime_type:
|
|
return mime_type
|
|
|
|
# Check by extension
|
|
ext = file_path.suffix.lower()
|
|
type_map = {
|
|
'.py': 'text/x-python',
|
|
'.js': 'application/javascript',
|
|
'.java': 'text/x-java',
|
|
'.cpp': 'text/x-c++',
|
|
'.c': 'text/x-c',
|
|
'.go': 'text/x-go',
|
|
'.rs': 'text/x-rust',
|
|
'.rb': 'text/x-ruby',
|
|
'.php': 'text/x-php',
|
|
'.yaml': 'text/yaml',
|
|
'.yml': 'text/yaml',
|
|
'.json': 'application/json',
|
|
'.xml': 'text/xml',
|
|
'.md': 'text/markdown',
|
|
'.txt': 'text/plain',
|
|
'.sh': 'text/x-shellscript',
|
|
'.bat': 'text/x-batch',
|
|
'.ps1': 'text/x-powershell'
|
|
}
|
|
|
|
return type_map.get(ext, 'application/octet-stream')
|
|
|
|
def _is_sensitive_file(self, file_path: Path) -> bool:
|
|
"""
|
|
Check if a file might contain sensitive information.
|
|
|
|
Args:
|
|
file_path: Path to the file
|
|
|
|
Returns:
|
|
True if potentially sensitive
|
|
"""
|
|
sensitive_patterns = [
|
|
'.env',
|
|
'.env.local',
|
|
'.env.production',
|
|
'credentials',
|
|
'password',
|
|
'secret',
|
|
'private_key',
|
|
'id_rsa',
|
|
'id_dsa',
|
|
'.pem',
|
|
'.key',
|
|
'.pfx',
|
|
'.p12',
|
|
'wallet',
|
|
'.ssh',
|
|
'token',
|
|
'api_key',
|
|
'config.json',
|
|
'settings.json',
|
|
'.git-credentials',
|
|
'.npmrc',
|
|
'.pypirc',
|
|
'.docker/config.json'
|
|
]
|
|
|
|
file_name_lower = file_path.name.lower()
|
|
for pattern in sensitive_patterns:
|
|
if pattern in file_name_lower:
|
|
return True
|
|
|
|
return False
|
|
|
|
def _calculate_hash(self, file_path: Path) -> str:
|
|
"""
|
|
Calculate SHA256 hash of a file.
|
|
|
|
Args:
|
|
file_path: Path to the file
|
|
|
|
Returns:
|
|
Hex string of SHA256 hash
|
|
"""
|
|
try:
|
|
sha256_hash = hashlib.sha256()
|
|
with open(file_path, "rb") as f:
|
|
for byte_block in iter(lambda: f.read(4096), b""):
|
|
sha256_hash.update(byte_block)
|
|
return sha256_hash.hexdigest()
|
|
except Exception as e:
|
|
logger.error(f"Failed to calculate hash for {file_path}: {e}")
|
|
return None |