mirror of
https://github.com/FuzzingLabs/fuzzforge_ai.git
synced 2026-02-13 09:52:47 +00:00
* feat: Complete migration from Prefect to Temporal BREAKING CHANGE: Replaces Prefect workflow orchestration with Temporal ## Major Changes - Replace Prefect with Temporal for workflow orchestration - Implement vertical worker architecture (rust, android) - Replace Docker registry with MinIO for unified storage - Refactor activities to be co-located with workflows - Update all API endpoints for Temporal compatibility ## Infrastructure - New: docker-compose.temporal.yaml (Temporal + MinIO + workers) - New: workers/ directory with rust and android vertical workers - New: backend/src/temporal/ (manager, discovery) - New: backend/src/storage/ (S3-cached storage with MinIO) - New: backend/toolbox/common/ (shared storage activities) - Deleted: docker-compose.yaml (old Prefect setup) - Deleted: backend/src/core/prefect_manager.py - Deleted: backend/src/services/prefect_stats_monitor.py - Deleted: Docker registry and insecure-registries requirement ## Workflows - Migrated: security_assessment workflow to Temporal - New: rust_test workflow (example/test workflow) - Deleted: secret_detection_scan (Prefect-based, to be reimplemented) - Activities now co-located with workflows for independent testing ## API Changes - Updated: backend/src/api/workflows.py (Temporal submission) - Updated: backend/src/api/runs.py (Temporal status/results) - Updated: backend/src/main.py (727 lines, TemporalManager integration) - Updated: All 16 MCP tools to use TemporalManager ## Testing - ✅ All services healthy (Temporal, PostgreSQL, MinIO, workers, backend) - ✅ All API endpoints functional - ✅ End-to-end workflow test passed (72 findings from vulnerable_app) - ✅ MinIO storage integration working (target upload/download, results) - ✅ Worker activity discovery working (6 activities registered) - ✅ Tarball extraction working - ✅ SARIF report generation working ## Documentation - ARCHITECTURE.md: Complete Temporal architecture documentation - QUICKSTART_TEMPORAL.md: Getting started guide - MIGRATION_DECISION.md: Why we chose Temporal over Prefect - IMPLEMENTATION_STATUS.md: Migration progress tracking - workers/README.md: Worker development guide ## Dependencies - Added: temporalio>=1.6.0 - Added: boto3>=1.34.0 (MinIO S3 client) - Removed: prefect>=3.4.18 * feat: Add Python fuzzing vertical with Atheris integration This commit implements a complete Python fuzzing workflow using Atheris: ## Python Worker (workers/python/) - Dockerfile with Python 3.11, Atheris, and build tools - Generic worker.py for dynamic workflow discovery - requirements.txt with temporalio, boto3, atheris dependencies - Added to docker-compose.temporal.yaml with dedicated cache volume ## AtherisFuzzer Module (backend/toolbox/modules/fuzzer/) - Reusable module extending BaseModule - Auto-discovers fuzz targets (fuzz_*.py, *_fuzz.py, fuzz_target.py) - Recursive search to find targets in nested directories - Dynamically loads TestOneInput() function - Configurable max_iterations and timeout - Real-time stats callback support for live monitoring - Returns findings as ModuleFinding objects ## Atheris Fuzzing Workflow (backend/toolbox/workflows/atheris_fuzzing/) - Temporal workflow for orchestrating fuzzing - Downloads user code from MinIO - Executes AtherisFuzzer module - Uploads results to MinIO - Cleans up cache after execution - metadata.yaml with vertical: python for routing ## Test Project (test_projects/python_fuzz_waterfall/) - Demonstrates stateful waterfall vulnerability - main.py with check_secret() that leaks progress - fuzz_target.py with Atheris TestOneInput() harness - Complete README with usage instructions ## Backend Fixes - Fixed parameter merging in REST API endpoints (workflows.py) - Changed workflow parameter passing from positional args to kwargs (manager.py) - Default parameters now properly merged with user parameters ## Testing ✅ Worker discovered AtherisFuzzingWorkflow ✅ Workflow executed end-to-end successfully ✅ Fuzz target auto-discovered in nested directories ✅ Atheris ran 100,000 iterations ✅ Results uploaded and cache cleaned * chore: Complete Temporal migration with updated CLI/SDK/docs This commit includes all remaining Temporal migration changes: ## CLI Updates (cli/) - Updated workflow execution commands for Temporal - Enhanced error handling and exceptions - Updated dependencies in uv.lock ## SDK Updates (sdk/) - Client methods updated for Temporal workflows - Updated models for new workflow execution - Updated dependencies in uv.lock ## Documentation Updates (docs/) - Architecture documentation for Temporal - Workflow concept documentation - Resource management documentation (new) - Debugging guide (new) - Updated tutorials and how-to guides - Troubleshooting updates ## README Updates - Main README with Temporal instructions - Backend README - CLI README - SDK README ## Other - Updated IMPLEMENTATION_STATUS.md - Removed old vulnerable_app.tar.gz These changes complete the Temporal migration and ensure the CLI/SDK work correctly with the new backend. * fix: Use positional args instead of kwargs for Temporal workflows The Temporal Python SDK's start_workflow() method doesn't accept a 'kwargs' parameter. Workflows must receive parameters as positional arguments via the 'args' parameter. Changed from: args=workflow_args # Positional arguments This fixes the error: TypeError: Client.start_workflow() got an unexpected keyword argument 'kwargs' Workflows now correctly receive parameters in order: - security_assessment: [target_id, scanner_config, analyzer_config, reporter_config] - atheris_fuzzing: [target_id, target_file, max_iterations, timeout_seconds] - rust_test: [target_id, test_message] * fix: Filter metadata-only parameters from workflow arguments SecurityAssessmentWorkflow was receiving 7 arguments instead of 2-5. The issue was that target_path and volume_mode from default_parameters were being passed to the workflow, when they should only be used by the system for configuration. Now filters out metadata-only parameters (target_path, volume_mode) before passing arguments to workflow execution. * refactor: Remove Prefect leftovers and volume mounting legacy Complete cleanup of Prefect migration artifacts: Backend: - Delete registry.py and workflow_discovery.py (Prefect-specific files) - Remove Docker validation from setup.py (no longer needed) - Remove ResourceLimits and VolumeMount models - Remove target_path and volume_mode from WorkflowSubmission - Remove supported_volume_modes from API and discovery - Clean up metadata.yaml files (remove volume/path fields) - Simplify parameter filtering in manager.py SDK: - Remove volume_mode parameter from client methods - Remove ResourceLimits and VolumeMount models - Remove Prefect error patterns from docker_logs.py - Clean up WorkflowSubmission and WorkflowMetadata models CLI: - Remove Volume Modes display from workflow info All removed features are Prefect-specific or Docker volume mounting artifacts. Temporal workflows use MinIO storage exclusively. * feat: Add comprehensive test suite and benchmark infrastructure - Add 68 unit tests for fuzzer, scanner, and analyzer modules - Implement pytest-based test infrastructure with fixtures - Add 6 performance benchmarks with category-specific thresholds - Configure GitHub Actions for automated testing and benchmarking - Add test and benchmark documentation Test coverage: - AtherisFuzzer: 8 tests - CargoFuzzer: 14 tests - FileScanner: 22 tests - SecurityAnalyzer: 24 tests All tests passing (68/68) All benchmarks passing (6/6) * fix: Resolve all ruff linting violations across codebase Fixed 27 ruff violations in 12 files: - Removed unused imports (Depends, Dict, Any, Optional, etc.) - Fixed undefined workflow_info variable in workflows.py - Removed dead code with undefined variables in atheris_fuzzer.py - Changed f-string to regular string where no placeholders used All files now pass ruff checks for CI/CD compliance. * fix: Configure CI for unit tests only - Renamed docker-compose.temporal.yaml → docker-compose.yml for CI compatibility - Commented out integration-tests job (no integration tests yet) - Updated test-summary to only depend on lint and unit-tests CI will now run successfully with 68 unit tests. Integration tests can be added later. * feat: Add CI/CD integration with ephemeral deployment model Implements comprehensive CI/CD support for FuzzForge with on-demand worker management: **Worker Management (v0.7.0)** - Add WorkerManager for automatic worker lifecycle control - Auto-start workers from stopped state when workflows execute - Auto-stop workers after workflow completion - Health checks and startup timeout handling (90s default) **CI/CD Features** - `--fail-on` flag: Fail builds based on SARIF severity levels (error/warning/note/info) - `--export-sarif` flag: Export findings in SARIF 2.1.0 format - `--auto-start`/`--auto-stop` flags: Control worker lifecycle - Exit code propagation: Returns 1 on blocking findings, 0 on success **Exit Code Fix** - Add `except typer.Exit: raise` handlers at 3 critical locations - Move worker cleanup to finally block for guaranteed execution - Exit codes now propagate correctly even when build fails **CI Scripts & Examples** - ci-start.sh: Start FuzzForge services with health checks - ci-stop.sh: Clean shutdown with volume preservation option - GitHub Actions workflow example (security-scan.yml) - GitLab CI pipeline example (.gitlab-ci.example.yml) - docker-compose.ci.yml: CI-optimized compose file with profiles **OSS-Fuzz Integration** - New ossfuzz_campaign workflow for running OSS-Fuzz projects - OSS-Fuzz worker with Docker-in-Docker support - Configurable campaign duration and project selection **Documentation** - Comprehensive CI/CD integration guide (docs/how-to/cicd-integration.md) - Updated architecture docs with worker lifecycle details - Updated workspace isolation documentation - CLI README with worker management examples **SDK Enhancements** - Add get_workflow_worker_info() endpoint - Worker vertical metadata in workflow responses **Testing** - All workflows tested: security_assessment, atheris_fuzzing, secret_detection, cargo_fuzzing - All monitoring commands tested: stats, crashes, status, finding - Full CI pipeline simulation verified - Exit codes verified for success/failure scenarios Ephemeral CI/CD model: ~3-4GB RAM, ~60-90s startup, runs entirely in CI containers. * fix: Resolve ruff linting violations in CI/CD code - Remove unused variables (run_id, defaults, result) - Remove unused imports - Fix f-string without placeholders All CI/CD integration files now pass ruff checks.
271 lines
8.9 KiB
Python
271 lines
8.9 KiB
Python
"""
|
|
Base module interface for all FuzzForge modules
|
|
"""
|
|
|
|
# Copyright (c) 2025 FuzzingLabs
|
|
#
|
|
# Licensed under the Business Source License 1.1 (BSL). See the LICENSE file
|
|
# at the root of this repository for details.
|
|
#
|
|
# After the Change Date (four years from publication), this version of the
|
|
# Licensed Work will be made available under the Apache License, Version 2.0.
|
|
# See the LICENSE-APACHE file or http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Additional attribution and requirements are provided in the NOTICE file.
|
|
|
|
from abc import ABC, abstractmethod
|
|
from pathlib import Path
|
|
from typing import Dict, Any, List, Optional
|
|
from pydantic import BaseModel, Field
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ModuleMetadata(BaseModel):
|
|
"""Metadata describing a module's capabilities and requirements"""
|
|
name: str = Field(..., description="Module name")
|
|
version: str = Field(..., description="Module version")
|
|
description: str = Field(..., description="Module description")
|
|
author: Optional[str] = Field(None, description="Module author")
|
|
category: str = Field(..., description="Module category (scanner, analyzer, reporter, etc.)")
|
|
tags: List[str] = Field(default_factory=list, description="Module tags")
|
|
input_schema: Dict[str, Any] = Field(default_factory=dict, description="Expected input schema")
|
|
output_schema: Dict[str, Any] = Field(default_factory=dict, description="Output schema")
|
|
requires_workspace: bool = Field(True, description="Whether module requires workspace access")
|
|
|
|
|
|
class ModuleFinding(BaseModel):
|
|
"""Individual finding from a module"""
|
|
id: str = Field(..., description="Unique finding ID")
|
|
title: str = Field(..., description="Finding title")
|
|
description: str = Field(..., description="Detailed description")
|
|
severity: str = Field(..., description="Severity level (info, low, medium, high, critical)")
|
|
category: str = Field(..., description="Finding category")
|
|
file_path: Optional[str] = Field(None, description="Affected file path relative to workspace")
|
|
line_start: Optional[int] = Field(None, description="Starting line number")
|
|
line_end: Optional[int] = Field(None, description="Ending line number")
|
|
code_snippet: Optional[str] = Field(None, description="Relevant code snippet")
|
|
recommendation: Optional[str] = Field(None, description="Remediation recommendation")
|
|
metadata: Dict[str, Any] = Field(default_factory=dict, description="Additional metadata")
|
|
|
|
|
|
class ModuleResult(BaseModel):
|
|
"""Standard result format from module execution"""
|
|
module: str = Field(..., description="Module name")
|
|
version: str = Field(..., description="Module version")
|
|
status: str = Field(default="success", description="Execution status (success, partial, failed)")
|
|
execution_time: float = Field(..., description="Execution time in seconds")
|
|
findings: List[ModuleFinding] = Field(default_factory=list, description="List of findings")
|
|
summary: Dict[str, Any] = Field(default_factory=dict, description="Summary statistics")
|
|
metadata: Dict[str, Any] = Field(default_factory=dict, description="Additional metadata")
|
|
error: Optional[str] = Field(None, description="Error message if failed")
|
|
sarif: Optional[Dict[str, Any]] = Field(None, description="SARIF report if generated by reporter module")
|
|
|
|
|
|
class BaseModule(ABC):
|
|
"""
|
|
Base interface for all security testing modules.
|
|
|
|
All modules must inherit from this class and implement the required methods.
|
|
Modules are designed to be stateless and reusable across different workflows.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initialize the module"""
|
|
self._metadata = self.get_metadata()
|
|
self._start_time = None
|
|
logger.info(f"Initialized module: {self._metadata.name} v{self._metadata.version}")
|
|
|
|
@abstractmethod
|
|
def get_metadata(self) -> ModuleMetadata:
|
|
"""
|
|
Get module metadata.
|
|
|
|
Returns:
|
|
ModuleMetadata object describing the module
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
async def execute(self, config: Dict[str, Any], workspace: Path) -> ModuleResult:
|
|
"""
|
|
Execute the module with given configuration and workspace.
|
|
|
|
Args:
|
|
config: Module-specific configuration parameters
|
|
workspace: Path to the mounted workspace directory
|
|
|
|
Returns:
|
|
ModuleResult containing findings and metadata
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def validate_config(self, config: Dict[str, Any]) -> bool:
|
|
"""
|
|
Validate the provided configuration against module requirements.
|
|
|
|
Args:
|
|
config: Configuration to validate
|
|
|
|
Returns:
|
|
True if configuration is valid, False otherwise
|
|
|
|
Raises:
|
|
ValueError: If configuration is invalid with details
|
|
"""
|
|
pass
|
|
|
|
def validate_workspace(self, workspace: Path) -> bool:
|
|
"""
|
|
Validate that the workspace exists and is accessible.
|
|
|
|
Args:
|
|
workspace: Path to the workspace
|
|
|
|
Returns:
|
|
True if workspace is valid
|
|
|
|
Raises:
|
|
ValueError: If workspace is invalid
|
|
"""
|
|
if not workspace.exists():
|
|
raise ValueError(f"Workspace does not exist: {workspace}")
|
|
|
|
if not workspace.is_dir():
|
|
raise ValueError(f"Workspace is not a directory: {workspace}")
|
|
|
|
return True
|
|
|
|
def create_finding(
|
|
self,
|
|
title: str,
|
|
description: str,
|
|
severity: str,
|
|
category: str,
|
|
**kwargs
|
|
) -> ModuleFinding:
|
|
"""
|
|
Helper method to create a standardized finding.
|
|
|
|
Args:
|
|
title: Finding title
|
|
description: Detailed description
|
|
severity: Severity level
|
|
category: Finding category
|
|
**kwargs: Additional finding fields
|
|
|
|
Returns:
|
|
ModuleFinding object
|
|
"""
|
|
import uuid
|
|
finding_id = str(uuid.uuid4())
|
|
|
|
return ModuleFinding(
|
|
id=finding_id,
|
|
title=title,
|
|
description=description,
|
|
severity=severity,
|
|
category=category,
|
|
**kwargs
|
|
)
|
|
|
|
def start_timer(self):
|
|
"""Start the execution timer"""
|
|
from time import time
|
|
self._start_time = time()
|
|
|
|
def get_execution_time(self) -> float:
|
|
"""Get the execution time in seconds"""
|
|
from time import time
|
|
if self._start_time is None:
|
|
return 0.0
|
|
return time() - self._start_time
|
|
|
|
def create_result(
|
|
self,
|
|
findings: List[ModuleFinding],
|
|
status: str = "success",
|
|
summary: Dict[str, Any] = None,
|
|
metadata: Dict[str, Any] = None,
|
|
error: str = None
|
|
) -> ModuleResult:
|
|
"""
|
|
Helper method to create a module result.
|
|
|
|
Args:
|
|
findings: List of findings
|
|
status: Execution status
|
|
summary: Summary statistics
|
|
metadata: Additional metadata
|
|
error: Error message if failed
|
|
|
|
Returns:
|
|
ModuleResult object
|
|
"""
|
|
return ModuleResult(
|
|
module=self._metadata.name,
|
|
version=self._metadata.version,
|
|
status=status,
|
|
execution_time=self.get_execution_time(),
|
|
findings=findings,
|
|
summary=summary or self._generate_summary(findings),
|
|
metadata=metadata or {},
|
|
error=error
|
|
)
|
|
|
|
def _generate_summary(self, findings: List[ModuleFinding]) -> Dict[str, Any]:
|
|
"""
|
|
Generate summary statistics from findings.
|
|
|
|
Args:
|
|
findings: List of findings
|
|
|
|
Returns:
|
|
Summary dictionary
|
|
"""
|
|
severity_counts = {
|
|
"info": 0,
|
|
"low": 0,
|
|
"medium": 0,
|
|
"high": 0,
|
|
"critical": 0
|
|
}
|
|
|
|
category_counts = {}
|
|
|
|
for finding in findings:
|
|
# Count by severity
|
|
if finding.severity in severity_counts:
|
|
severity_counts[finding.severity] += 1
|
|
|
|
# Count by category
|
|
if finding.category not in category_counts:
|
|
category_counts[finding.category] = 0
|
|
category_counts[finding.category] += 1
|
|
|
|
return {
|
|
"total_findings": len(findings),
|
|
"severity_counts": severity_counts,
|
|
"category_counts": category_counts,
|
|
"highest_severity": self._get_highest_severity(findings)
|
|
}
|
|
|
|
def _get_highest_severity(self, findings: List[ModuleFinding]) -> str:
|
|
"""
|
|
Get the highest severity from findings.
|
|
|
|
Args:
|
|
findings: List of findings
|
|
|
|
Returns:
|
|
Highest severity level
|
|
"""
|
|
severity_order = ["critical", "high", "medium", "low", "info"]
|
|
|
|
for severity in severity_order:
|
|
if any(f.severity == severity for f in findings):
|
|
return severity
|
|
|
|
return "none" |