mirror of
https://github.com/FuzzingLabs/fuzzforge_ai.git
synced 2026-02-13 07:52:45 +00:00
* feat: Complete migration from Prefect to Temporal BREAKING CHANGE: Replaces Prefect workflow orchestration with Temporal ## Major Changes - Replace Prefect with Temporal for workflow orchestration - Implement vertical worker architecture (rust, android) - Replace Docker registry with MinIO for unified storage - Refactor activities to be co-located with workflows - Update all API endpoints for Temporal compatibility ## Infrastructure - New: docker-compose.temporal.yaml (Temporal + MinIO + workers) - New: workers/ directory with rust and android vertical workers - New: backend/src/temporal/ (manager, discovery) - New: backend/src/storage/ (S3-cached storage with MinIO) - New: backend/toolbox/common/ (shared storage activities) - Deleted: docker-compose.yaml (old Prefect setup) - Deleted: backend/src/core/prefect_manager.py - Deleted: backend/src/services/prefect_stats_monitor.py - Deleted: Docker registry and insecure-registries requirement ## Workflows - Migrated: security_assessment workflow to Temporal - New: rust_test workflow (example/test workflow) - Deleted: secret_detection_scan (Prefect-based, to be reimplemented) - Activities now co-located with workflows for independent testing ## API Changes - Updated: backend/src/api/workflows.py (Temporal submission) - Updated: backend/src/api/runs.py (Temporal status/results) - Updated: backend/src/main.py (727 lines, TemporalManager integration) - Updated: All 16 MCP tools to use TemporalManager ## Testing - ✅ All services healthy (Temporal, PostgreSQL, MinIO, workers, backend) - ✅ All API endpoints functional - ✅ End-to-end workflow test passed (72 findings from vulnerable_app) - ✅ MinIO storage integration working (target upload/download, results) - ✅ Worker activity discovery working (6 activities registered) - ✅ Tarball extraction working - ✅ SARIF report generation working ## Documentation - ARCHITECTURE.md: Complete Temporal architecture documentation - QUICKSTART_TEMPORAL.md: Getting started guide - MIGRATION_DECISION.md: Why we chose Temporal over Prefect - IMPLEMENTATION_STATUS.md: Migration progress tracking - workers/README.md: Worker development guide ## Dependencies - Added: temporalio>=1.6.0 - Added: boto3>=1.34.0 (MinIO S3 client) - Removed: prefect>=3.4.18 * feat: Add Python fuzzing vertical with Atheris integration This commit implements a complete Python fuzzing workflow using Atheris: ## Python Worker (workers/python/) - Dockerfile with Python 3.11, Atheris, and build tools - Generic worker.py for dynamic workflow discovery - requirements.txt with temporalio, boto3, atheris dependencies - Added to docker-compose.temporal.yaml with dedicated cache volume ## AtherisFuzzer Module (backend/toolbox/modules/fuzzer/) - Reusable module extending BaseModule - Auto-discovers fuzz targets (fuzz_*.py, *_fuzz.py, fuzz_target.py) - Recursive search to find targets in nested directories - Dynamically loads TestOneInput() function - Configurable max_iterations and timeout - Real-time stats callback support for live monitoring - Returns findings as ModuleFinding objects ## Atheris Fuzzing Workflow (backend/toolbox/workflows/atheris_fuzzing/) - Temporal workflow for orchestrating fuzzing - Downloads user code from MinIO - Executes AtherisFuzzer module - Uploads results to MinIO - Cleans up cache after execution - metadata.yaml with vertical: python for routing ## Test Project (test_projects/python_fuzz_waterfall/) - Demonstrates stateful waterfall vulnerability - main.py with check_secret() that leaks progress - fuzz_target.py with Atheris TestOneInput() harness - Complete README with usage instructions ## Backend Fixes - Fixed parameter merging in REST API endpoints (workflows.py) - Changed workflow parameter passing from positional args to kwargs (manager.py) - Default parameters now properly merged with user parameters ## Testing ✅ Worker discovered AtherisFuzzingWorkflow ✅ Workflow executed end-to-end successfully ✅ Fuzz target auto-discovered in nested directories ✅ Atheris ran 100,000 iterations ✅ Results uploaded and cache cleaned * chore: Complete Temporal migration with updated CLI/SDK/docs This commit includes all remaining Temporal migration changes: ## CLI Updates (cli/) - Updated workflow execution commands for Temporal - Enhanced error handling and exceptions - Updated dependencies in uv.lock ## SDK Updates (sdk/) - Client methods updated for Temporal workflows - Updated models for new workflow execution - Updated dependencies in uv.lock ## Documentation Updates (docs/) - Architecture documentation for Temporal - Workflow concept documentation - Resource management documentation (new) - Debugging guide (new) - Updated tutorials and how-to guides - Troubleshooting updates ## README Updates - Main README with Temporal instructions - Backend README - CLI README - SDK README ## Other - Updated IMPLEMENTATION_STATUS.md - Removed old vulnerable_app.tar.gz These changes complete the Temporal migration and ensure the CLI/SDK work correctly with the new backend. * fix: Use positional args instead of kwargs for Temporal workflows The Temporal Python SDK's start_workflow() method doesn't accept a 'kwargs' parameter. Workflows must receive parameters as positional arguments via the 'args' parameter. Changed from: args=workflow_args # Positional arguments This fixes the error: TypeError: Client.start_workflow() got an unexpected keyword argument 'kwargs' Workflows now correctly receive parameters in order: - security_assessment: [target_id, scanner_config, analyzer_config, reporter_config] - atheris_fuzzing: [target_id, target_file, max_iterations, timeout_seconds] - rust_test: [target_id, test_message] * fix: Filter metadata-only parameters from workflow arguments SecurityAssessmentWorkflow was receiving 7 arguments instead of 2-5. The issue was that target_path and volume_mode from default_parameters were being passed to the workflow, when they should only be used by the system for configuration. Now filters out metadata-only parameters (target_path, volume_mode) before passing arguments to workflow execution. * refactor: Remove Prefect leftovers and volume mounting legacy Complete cleanup of Prefect migration artifacts: Backend: - Delete registry.py and workflow_discovery.py (Prefect-specific files) - Remove Docker validation from setup.py (no longer needed) - Remove ResourceLimits and VolumeMount models - Remove target_path and volume_mode from WorkflowSubmission - Remove supported_volume_modes from API and discovery - Clean up metadata.yaml files (remove volume/path fields) - Simplify parameter filtering in manager.py SDK: - Remove volume_mode parameter from client methods - Remove ResourceLimits and VolumeMount models - Remove Prefect error patterns from docker_logs.py - Clean up WorkflowSubmission and WorkflowMetadata models CLI: - Remove Volume Modes display from workflow info All removed features are Prefect-specific or Docker volume mounting artifacts. Temporal workflows use MinIO storage exclusively. * feat: Add comprehensive test suite and benchmark infrastructure - Add 68 unit tests for fuzzer, scanner, and analyzer modules - Implement pytest-based test infrastructure with fixtures - Add 6 performance benchmarks with category-specific thresholds - Configure GitHub Actions for automated testing and benchmarking - Add test and benchmark documentation Test coverage: - AtherisFuzzer: 8 tests - CargoFuzzer: 14 tests - FileScanner: 22 tests - SecurityAnalyzer: 24 tests All tests passing (68/68) All benchmarks passing (6/6) * fix: Resolve all ruff linting violations across codebase Fixed 27 ruff violations in 12 files: - Removed unused imports (Depends, Dict, Any, Optional, etc.) - Fixed undefined workflow_info variable in workflows.py - Removed dead code with undefined variables in atheris_fuzzer.py - Changed f-string to regular string where no placeholders used All files now pass ruff checks for CI/CD compliance. * fix: Configure CI for unit tests only - Renamed docker-compose.temporal.yaml → docker-compose.yml for CI compatibility - Commented out integration-tests job (no integration tests yet) - Updated test-summary to only depend on lint and unit-tests CI will now run successfully with 68 unit tests. Integration tests can be added later. * feat: Add CI/CD integration with ephemeral deployment model Implements comprehensive CI/CD support for FuzzForge with on-demand worker management: **Worker Management (v0.7.0)** - Add WorkerManager for automatic worker lifecycle control - Auto-start workers from stopped state when workflows execute - Auto-stop workers after workflow completion - Health checks and startup timeout handling (90s default) **CI/CD Features** - `--fail-on` flag: Fail builds based on SARIF severity levels (error/warning/note/info) - `--export-sarif` flag: Export findings in SARIF 2.1.0 format - `--auto-start`/`--auto-stop` flags: Control worker lifecycle - Exit code propagation: Returns 1 on blocking findings, 0 on success **Exit Code Fix** - Add `except typer.Exit: raise` handlers at 3 critical locations - Move worker cleanup to finally block for guaranteed execution - Exit codes now propagate correctly even when build fails **CI Scripts & Examples** - ci-start.sh: Start FuzzForge services with health checks - ci-stop.sh: Clean shutdown with volume preservation option - GitHub Actions workflow example (security-scan.yml) - GitLab CI pipeline example (.gitlab-ci.example.yml) - docker-compose.ci.yml: CI-optimized compose file with profiles **OSS-Fuzz Integration** - New ossfuzz_campaign workflow for running OSS-Fuzz projects - OSS-Fuzz worker with Docker-in-Docker support - Configurable campaign duration and project selection **Documentation** - Comprehensive CI/CD integration guide (docs/how-to/cicd-integration.md) - Updated architecture docs with worker lifecycle details - Updated workspace isolation documentation - CLI README with worker management examples **SDK Enhancements** - Add get_workflow_worker_info() endpoint - Worker vertical metadata in workflow responses **Testing** - All workflows tested: security_assessment, atheris_fuzzing, secret_detection, cargo_fuzzing - All monitoring commands tested: stats, crashes, status, finding - Full CI pipeline simulation verified - Exit codes verified for success/failure scenarios Ephemeral CI/CD model: ~3-4GB RAM, ~60-90s startup, runs entirely in CI containers. * fix: Resolve ruff linting violations in CI/CD code - Remove unused variables (run_id, defaults, result) - Remove unused imports - Fix f-string without placeholders All CI/CD integration files now pass ruff checks.
726 lines
26 KiB
Python
726 lines
26 KiB
Python
# Copyright (c) 2025 FuzzingLabs
|
|
#
|
|
# Licensed under the Business Source License 1.1 (BSL). See the LICENSE file
|
|
# at the root of this repository for details.
|
|
#
|
|
# After the Change Date (four years from publication), this version of the
|
|
# Licensed Work will be made available under the Apache License, Version 2.0.
|
|
# See the LICENSE-APACHE file or http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Additional attribution and requirements are provided in the NOTICE file.
|
|
|
|
import asyncio
|
|
import logging
|
|
import os
|
|
from contextlib import AsyncExitStack, asynccontextmanager, suppress
|
|
from typing import Any, Dict, Optional, List
|
|
|
|
import uvicorn
|
|
from fastapi import FastAPI
|
|
from starlette.applications import Starlette
|
|
from starlette.routing import Mount
|
|
|
|
from fastmcp.server.http import create_sse_app
|
|
|
|
from src.temporal.manager import TemporalManager
|
|
from src.core.setup import setup_result_storage, validate_infrastructure
|
|
from src.api import workflows, runs, fuzzing
|
|
|
|
from fastmcp import FastMCP
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
temporal_mgr = TemporalManager()
|
|
|
|
|
|
class TemporalBootstrapState:
|
|
"""Tracks Temporal initialization progress for API and MCP consumers."""
|
|
|
|
def __init__(self) -> None:
|
|
self.ready: bool = False
|
|
self.status: str = "not_started"
|
|
self.last_error: Optional[str] = None
|
|
self.task_running: bool = False
|
|
|
|
def as_dict(self) -> Dict[str, Any]:
|
|
return {
|
|
"ready": self.ready,
|
|
"status": self.status,
|
|
"last_error": self.last_error,
|
|
"task_running": self.task_running,
|
|
}
|
|
|
|
|
|
temporal_bootstrap_state = TemporalBootstrapState()
|
|
|
|
# Configure retry strategy for bootstrapping Temporal + infrastructure
|
|
STARTUP_RETRY_SECONDS = max(1, int(os.getenv("FUZZFORGE_STARTUP_RETRY_SECONDS", "5")))
|
|
STARTUP_RETRY_MAX_SECONDS = max(
|
|
STARTUP_RETRY_SECONDS,
|
|
int(os.getenv("FUZZFORGE_STARTUP_RETRY_MAX_SECONDS", "60")),
|
|
)
|
|
|
|
temporal_bootstrap_task: Optional[asyncio.Task] = None
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# FastAPI application (REST API)
|
|
# ---------------------------------------------------------------------------
|
|
|
|
app = FastAPI(
|
|
title="FuzzForge API",
|
|
description="Security testing workflow orchestration API with fuzzing support",
|
|
version="0.6.0",
|
|
)
|
|
|
|
app.include_router(workflows.router)
|
|
app.include_router(runs.router)
|
|
app.include_router(fuzzing.router)
|
|
|
|
|
|
def get_temporal_status() -> Dict[str, Any]:
|
|
"""Return a snapshot of Temporal bootstrap state for diagnostics."""
|
|
status = temporal_bootstrap_state.as_dict()
|
|
status["workflows_loaded"] = len(temporal_mgr.workflows)
|
|
status["bootstrap_task_running"] = (
|
|
temporal_bootstrap_task is not None and not temporal_bootstrap_task.done()
|
|
)
|
|
return status
|
|
|
|
|
|
def _temporal_not_ready_status() -> Optional[Dict[str, Any]]:
|
|
"""Return status details if Temporal is not ready yet."""
|
|
status = get_temporal_status()
|
|
if status.get("ready"):
|
|
return None
|
|
return status
|
|
|
|
|
|
@app.get("/")
|
|
async def root() -> Dict[str, Any]:
|
|
status = get_temporal_status()
|
|
return {
|
|
"name": "FuzzForge API",
|
|
"version": "0.6.0",
|
|
"status": "ready" if status.get("ready") else "initializing",
|
|
"workflows_loaded": status.get("workflows_loaded", 0),
|
|
"temporal": status,
|
|
}
|
|
|
|
|
|
@app.get("/health")
|
|
async def health() -> Dict[str, str]:
|
|
status = get_temporal_status()
|
|
health_status = "healthy" if status.get("ready") else "initializing"
|
|
return {"status": health_status}
|
|
|
|
|
|
# Map FastAPI OpenAPI operationIds to readable MCP tool names
|
|
FASTAPI_MCP_NAME_OVERRIDES: Dict[str, str] = {
|
|
"list_workflows_workflows__get": "api_list_workflows",
|
|
"get_metadata_schema_workflows_metadata_schema_get": "api_get_metadata_schema",
|
|
"get_workflow_metadata_workflows__workflow_name__metadata_get": "api_get_workflow_metadata",
|
|
"submit_workflow_workflows__workflow_name__submit_post": "api_submit_workflow",
|
|
"get_workflow_parameters_workflows__workflow_name__parameters_get": "api_get_workflow_parameters",
|
|
"get_run_status_runs__run_id__status_get": "api_get_run_status",
|
|
"get_run_findings_runs__run_id__findings_get": "api_get_run_findings",
|
|
"get_workflow_findings_runs__workflow_name__findings__run_id__get": "api_get_workflow_findings",
|
|
"get_fuzzing_stats_fuzzing__run_id__stats_get": "api_get_fuzzing_stats",
|
|
"update_fuzzing_stats_fuzzing__run_id__stats_post": "api_update_fuzzing_stats",
|
|
"get_crash_reports_fuzzing__run_id__crashes_get": "api_get_crash_reports",
|
|
"report_crash_fuzzing__run_id__crash_post": "api_report_crash",
|
|
"stream_fuzzing_updates_fuzzing__run_id__stream_get": "api_stream_fuzzing_updates",
|
|
"cleanup_fuzzing_run_fuzzing__run_id__delete": "api_cleanup_fuzzing_run",
|
|
"root__get": "api_root",
|
|
"health_health_get": "api_health",
|
|
}
|
|
|
|
|
|
# Create an MCP adapter exposing all FastAPI endpoints via OpenAPI parsing
|
|
FASTAPI_MCP_ADAPTER = FastMCP.from_fastapi(
|
|
app,
|
|
name="FuzzForge FastAPI",
|
|
mcp_names=FASTAPI_MCP_NAME_OVERRIDES,
|
|
)
|
|
_fastapi_mcp_imported = False
|
|
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# FastMCP server (runs on dedicated port outside FastAPI)
|
|
# ---------------------------------------------------------------------------
|
|
|
|
mcp = FastMCP(name="FuzzForge MCP")
|
|
|
|
|
|
async def _bootstrap_temporal_with_retries() -> None:
|
|
"""Initialize Temporal infrastructure with exponential backoff retries."""
|
|
|
|
attempt = 0
|
|
|
|
while True:
|
|
attempt += 1
|
|
temporal_bootstrap_state.task_running = True
|
|
temporal_bootstrap_state.status = "starting"
|
|
temporal_bootstrap_state.ready = False
|
|
temporal_bootstrap_state.last_error = None
|
|
|
|
try:
|
|
logger.info("Bootstrapping Temporal infrastructure...")
|
|
await validate_infrastructure()
|
|
await setup_result_storage()
|
|
await temporal_mgr.initialize()
|
|
|
|
temporal_bootstrap_state.ready = True
|
|
temporal_bootstrap_state.status = "ready"
|
|
temporal_bootstrap_state.task_running = False
|
|
logger.info("Temporal infrastructure ready")
|
|
return
|
|
|
|
except asyncio.CancelledError:
|
|
temporal_bootstrap_state.status = "cancelled"
|
|
temporal_bootstrap_state.task_running = False
|
|
logger.info("Temporal bootstrap task cancelled")
|
|
raise
|
|
|
|
except Exception as exc: # pragma: no cover - defensive logging on infra startup
|
|
logger.exception("Temporal bootstrap failed")
|
|
temporal_bootstrap_state.ready = False
|
|
temporal_bootstrap_state.status = "error"
|
|
temporal_bootstrap_state.last_error = str(exc)
|
|
|
|
# Ensure partial initialization does not leave stale state behind
|
|
temporal_mgr.workflows.clear()
|
|
|
|
wait_time = min(
|
|
STARTUP_RETRY_SECONDS * (2 ** (attempt - 1)),
|
|
STARTUP_RETRY_MAX_SECONDS,
|
|
)
|
|
logger.info("Retrying Temporal bootstrap in %s second(s)", wait_time)
|
|
|
|
try:
|
|
await asyncio.sleep(wait_time)
|
|
except asyncio.CancelledError:
|
|
temporal_bootstrap_state.status = "cancelled"
|
|
temporal_bootstrap_state.task_running = False
|
|
raise
|
|
|
|
|
|
def _lookup_workflow(workflow_name: str):
|
|
info = temporal_mgr.workflows.get(workflow_name)
|
|
if not info:
|
|
return None
|
|
metadata = info.metadata
|
|
defaults = metadata.get("default_parameters", {})
|
|
default_target_path = metadata.get("default_target_path") or defaults.get("target_path")
|
|
supported_modes = metadata.get("supported_volume_modes") or ["ro", "rw"]
|
|
if not isinstance(supported_modes, list) or not supported_modes:
|
|
supported_modes = ["ro", "rw"]
|
|
default_volume_mode = (
|
|
metadata.get("default_volume_mode")
|
|
or defaults.get("volume_mode")
|
|
or supported_modes[0]
|
|
)
|
|
return {
|
|
"name": workflow_name,
|
|
"version": metadata.get("version", "0.6.0"),
|
|
"description": metadata.get("description", ""),
|
|
"author": metadata.get("author"),
|
|
"tags": metadata.get("tags", []),
|
|
"parameters": metadata.get("parameters", {}),
|
|
"default_parameters": metadata.get("default_parameters", {}),
|
|
"required_modules": metadata.get("required_modules", []),
|
|
"supported_volume_modes": supported_modes,
|
|
"default_target_path": default_target_path,
|
|
"default_volume_mode": default_volume_mode
|
|
}
|
|
|
|
|
|
@mcp.tool
|
|
async def list_workflows_mcp() -> Dict[str, Any]:
|
|
"""List all discovered workflows and their metadata summary."""
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"workflows": [],
|
|
"temporal": not_ready,
|
|
"message": "Temporal infrastructure is still initializing",
|
|
}
|
|
|
|
workflows_summary = []
|
|
for name, info in temporal_mgr.workflows.items():
|
|
metadata = info.metadata
|
|
defaults = metadata.get("default_parameters", {})
|
|
workflows_summary.append({
|
|
"name": name,
|
|
"version": metadata.get("version", "0.6.0"),
|
|
"description": metadata.get("description", ""),
|
|
"author": metadata.get("author"),
|
|
"tags": metadata.get("tags", []),
|
|
"supported_volume_modes": metadata.get("supported_volume_modes", ["ro", "rw"]),
|
|
"default_volume_mode": metadata.get("default_volume_mode")
|
|
or defaults.get("volume_mode")
|
|
or "ro",
|
|
"default_target_path": metadata.get("default_target_path")
|
|
or defaults.get("target_path")
|
|
})
|
|
return {"workflows": workflows_summary, "temporal": get_temporal_status()}
|
|
|
|
|
|
@mcp.tool
|
|
async def get_workflow_metadata_mcp(workflow_name: str) -> Dict[str, Any]:
|
|
"""Fetch detailed metadata for a workflow."""
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"error": "Temporal infrastructure not ready",
|
|
"temporal": not_ready,
|
|
}
|
|
|
|
data = _lookup_workflow(workflow_name)
|
|
if not data:
|
|
return {"error": f"Workflow not found: {workflow_name}"}
|
|
return data
|
|
|
|
|
|
@mcp.tool
|
|
async def get_workflow_parameters_mcp(workflow_name: str) -> Dict[str, Any]:
|
|
"""Return the parameter schema and defaults for a workflow."""
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"error": "Temporal infrastructure not ready",
|
|
"temporal": not_ready,
|
|
}
|
|
|
|
data = _lookup_workflow(workflow_name)
|
|
if not data:
|
|
return {"error": f"Workflow not found: {workflow_name}"}
|
|
return {
|
|
"parameters": data.get("parameters", {}),
|
|
"defaults": data.get("default_parameters", {}),
|
|
}
|
|
|
|
|
|
@mcp.tool
|
|
async def get_workflow_metadata_schema_mcp() -> Dict[str, Any]:
|
|
"""Return the JSON schema describing workflow metadata files."""
|
|
from src.temporal.discovery import WorkflowDiscovery
|
|
return WorkflowDiscovery.get_metadata_schema()
|
|
|
|
|
|
@mcp.tool
|
|
async def submit_security_scan_mcp(
|
|
workflow_name: str,
|
|
target_id: str,
|
|
parameters: Dict[str, Any] | None = None,
|
|
) -> Dict[str, Any] | Dict[str, str]:
|
|
"""Submit a Temporal workflow via MCP."""
|
|
try:
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"error": "Temporal infrastructure not ready",
|
|
"temporal": not_ready,
|
|
}
|
|
|
|
workflow_info = temporal_mgr.workflows.get(workflow_name)
|
|
if not workflow_info:
|
|
return {"error": f"Workflow '{workflow_name}' not found"}
|
|
|
|
metadata = workflow_info.metadata or {}
|
|
defaults = metadata.get("default_parameters", {})
|
|
|
|
parameters = parameters or {}
|
|
cleaned_parameters: Dict[str, Any] = {**defaults, **parameters}
|
|
|
|
# Ensure *_config structures default to dicts
|
|
for key, value in list(cleaned_parameters.items()):
|
|
if isinstance(key, str) and key.endswith("_config") and value is None:
|
|
cleaned_parameters[key] = {}
|
|
|
|
# Some workflows expect configuration dictionaries even when omitted
|
|
parameter_definitions = (
|
|
metadata.get("parameters", {}).get("properties", {})
|
|
if isinstance(metadata.get("parameters"), dict)
|
|
else {}
|
|
)
|
|
for key, definition in parameter_definitions.items():
|
|
if not isinstance(key, str) or not key.endswith("_config"):
|
|
continue
|
|
if key not in cleaned_parameters:
|
|
default_value = definition.get("default") if isinstance(definition, dict) else None
|
|
cleaned_parameters[key] = default_value if default_value is not None else {}
|
|
elif cleaned_parameters[key] is None:
|
|
cleaned_parameters[key] = {}
|
|
|
|
# Start workflow
|
|
handle = await temporal_mgr.run_workflow(
|
|
workflow_name=workflow_name,
|
|
target_id=target_id,
|
|
workflow_params=cleaned_parameters,
|
|
)
|
|
|
|
return {
|
|
"run_id": handle.id,
|
|
"status": "RUNNING",
|
|
"workflow": workflow_name,
|
|
"message": f"Workflow '{workflow_name}' submitted successfully",
|
|
"target_id": target_id,
|
|
"parameters": cleaned_parameters,
|
|
"mcp_enabled": True,
|
|
}
|
|
except Exception as exc: # pragma: no cover - defensive logging
|
|
logger.exception("MCP submit failed")
|
|
return {"error": f"Failed to submit workflow: {exc}"}
|
|
|
|
|
|
@mcp.tool
|
|
async def get_comprehensive_scan_summary(run_id: str) -> Dict[str, Any] | Dict[str, str]:
|
|
"""Return a summary for the given workflow run via MCP."""
|
|
try:
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"error": "Temporal infrastructure not ready",
|
|
"temporal": not_ready,
|
|
}
|
|
|
|
status = await temporal_mgr.get_workflow_status(run_id)
|
|
|
|
# Try to get result if completed
|
|
total_findings = 0
|
|
severity_summary = {"critical": 0, "high": 0, "medium": 0, "low": 0, "info": 0}
|
|
|
|
if status.get("status") == "COMPLETED":
|
|
try:
|
|
result = await temporal_mgr.get_workflow_result(run_id)
|
|
if isinstance(result, dict):
|
|
summary = result.get("summary", {})
|
|
total_findings = summary.get("total_findings", 0)
|
|
except Exception as e:
|
|
logger.debug(f"Could not retrieve result for {run_id}: {e}")
|
|
|
|
return {
|
|
"run_id": run_id,
|
|
"workflow": "unknown", # Temporal doesn't track workflow name in status
|
|
"status": status.get("status", "unknown"),
|
|
"is_completed": status.get("status") == "COMPLETED",
|
|
"total_findings": total_findings,
|
|
"severity_summary": severity_summary,
|
|
"scan_duration": status.get("close_time", "In progress"),
|
|
"recommendations": (
|
|
[
|
|
"Review high and critical severity findings first",
|
|
"Implement security fixes based on finding recommendations",
|
|
"Re-run scan after applying fixes to verify remediation",
|
|
]
|
|
if total_findings > 0
|
|
else ["No security issues found"]
|
|
),
|
|
"mcp_analysis": True,
|
|
}
|
|
except Exception as exc: # pragma: no cover
|
|
logger.exception("MCP summary failed")
|
|
return {"error": f"Failed to summarize run: {exc}"}
|
|
|
|
|
|
@mcp.tool
|
|
async def get_run_status_mcp(run_id: str) -> Dict[str, Any]:
|
|
"""Return current status information for a Temporal run."""
|
|
try:
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"error": "Temporal infrastructure not ready",
|
|
"temporal": not_ready,
|
|
}
|
|
|
|
status = await temporal_mgr.get_workflow_status(run_id)
|
|
|
|
return {
|
|
"run_id": run_id,
|
|
"workflow": "unknown",
|
|
"status": status["status"],
|
|
"is_completed": status["status"] in ["COMPLETED", "FAILED", "CANCELLED"],
|
|
"is_failed": status["status"] == "FAILED",
|
|
"is_running": status["status"] == "RUNNING",
|
|
"created_at": status.get("start_time"),
|
|
"updated_at": status.get("close_time") or status.get("execution_time"),
|
|
}
|
|
except Exception as exc:
|
|
logger.exception("MCP run status failed")
|
|
return {"error": f"Failed to get run status: {exc}"}
|
|
|
|
|
|
@mcp.tool
|
|
async def get_run_findings_mcp(run_id: str) -> Dict[str, Any]:
|
|
"""Return SARIF findings for a completed run."""
|
|
try:
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"error": "Temporal infrastructure not ready",
|
|
"temporal": not_ready,
|
|
}
|
|
|
|
status = await temporal_mgr.get_workflow_status(run_id)
|
|
if status.get("status") != "COMPLETED":
|
|
return {"error": f"Run {run_id} not completed. Status: {status.get('status')}"}
|
|
|
|
result = await temporal_mgr.get_workflow_result(run_id)
|
|
|
|
metadata = {
|
|
"completion_time": status.get("close_time"),
|
|
"workflow_version": "unknown",
|
|
}
|
|
|
|
sarif = result.get("sarif", {}) if isinstance(result, dict) else {}
|
|
|
|
return {
|
|
"workflow": "unknown",
|
|
"run_id": run_id,
|
|
"sarif": sarif,
|
|
"metadata": metadata,
|
|
}
|
|
except Exception as exc:
|
|
logger.exception("MCP findings failed")
|
|
return {"error": f"Failed to retrieve findings: {exc}"}
|
|
|
|
|
|
@mcp.tool
|
|
async def list_recent_runs_mcp(
|
|
limit: int = 10,
|
|
workflow_name: str | None = None,
|
|
) -> Dict[str, Any]:
|
|
"""List recent Temporal runs with optional workflow filter."""
|
|
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"runs": [],
|
|
"temporal": not_ready,
|
|
"message": "Temporal infrastructure is still initializing",
|
|
}
|
|
|
|
try:
|
|
limit_value = int(limit)
|
|
except (TypeError, ValueError):
|
|
limit_value = 10
|
|
limit_value = max(1, min(limit_value, 100))
|
|
|
|
try:
|
|
# Build filter query
|
|
filter_query = None
|
|
if workflow_name:
|
|
workflow_info = temporal_mgr.workflows.get(workflow_name)
|
|
if workflow_info:
|
|
filter_query = f'WorkflowType="{workflow_info.workflow_type}"'
|
|
|
|
workflows = await temporal_mgr.list_workflows(filter_query, limit_value)
|
|
|
|
results: List[Dict[str, Any]] = []
|
|
for wf in workflows:
|
|
results.append({
|
|
"run_id": wf["workflow_id"],
|
|
"workflow": workflow_name or "unknown",
|
|
"state": wf["status"],
|
|
"state_type": wf["status"],
|
|
"is_completed": wf["status"] in ["COMPLETED", "FAILED", "CANCELLED"],
|
|
"is_running": wf["status"] == "RUNNING",
|
|
"is_failed": wf["status"] == "FAILED",
|
|
"created_at": wf.get("start_time"),
|
|
"updated_at": wf.get("close_time"),
|
|
})
|
|
|
|
return {"runs": results, "temporal": get_temporal_status()}
|
|
|
|
except Exception as exc:
|
|
logger.exception("Failed to list runs")
|
|
return {
|
|
"runs": [],
|
|
"temporal": get_temporal_status(),
|
|
"error": str(exc)
|
|
}
|
|
|
|
|
|
@mcp.tool
|
|
async def get_fuzzing_stats_mcp(run_id: str) -> Dict[str, Any]:
|
|
"""Return fuzzing statistics for a run if available."""
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"error": "Temporal infrastructure not ready",
|
|
"temporal": not_ready,
|
|
}
|
|
|
|
stats = fuzzing.fuzzing_stats.get(run_id)
|
|
if not stats:
|
|
return {"error": f"Fuzzing run not found: {run_id}"}
|
|
# Be resilient if a plain dict slipped into the cache
|
|
if isinstance(stats, dict):
|
|
return stats
|
|
if hasattr(stats, "model_dump"):
|
|
return stats.model_dump()
|
|
if hasattr(stats, "dict"):
|
|
return stats.dict()
|
|
# Last resort
|
|
return getattr(stats, "__dict__", {"run_id": run_id})
|
|
|
|
|
|
@mcp.tool
|
|
async def get_fuzzing_crash_reports_mcp(run_id: str) -> Dict[str, Any]:
|
|
"""Return crash reports collected for a fuzzing run."""
|
|
not_ready = _temporal_not_ready_status()
|
|
if not_ready:
|
|
return {
|
|
"error": "Temporal infrastructure not ready",
|
|
"temporal": not_ready,
|
|
}
|
|
|
|
reports = fuzzing.crash_reports.get(run_id)
|
|
if reports is None:
|
|
return {"error": f"Fuzzing run not found: {run_id}"}
|
|
return {"run_id": run_id, "crashes": [report.model_dump() for report in reports]}
|
|
|
|
|
|
@mcp.tool
|
|
async def get_backend_status_mcp() -> Dict[str, Any]:
|
|
"""Expose backend readiness, workflows, and registered MCP tools."""
|
|
|
|
status = get_temporal_status()
|
|
response: Dict[str, Any] = {"temporal": status}
|
|
|
|
if status.get("ready"):
|
|
response["workflows"] = list(temporal_mgr.workflows.keys())
|
|
|
|
try:
|
|
tools = await mcp._tool_manager.list_tools()
|
|
response["mcp_tools"] = sorted(tool.name for tool in tools)
|
|
except Exception as exc: # pragma: no cover - defensive logging
|
|
logger.debug("Failed to enumerate MCP tools: %s", exc)
|
|
|
|
return response
|
|
|
|
|
|
def create_mcp_transport_app() -> Starlette:
|
|
"""Build a Starlette app serving HTTP + SSE transports on one port."""
|
|
|
|
http_app = mcp.http_app(path="/", transport="streamable-http")
|
|
sse_app = create_sse_app(
|
|
server=mcp,
|
|
message_path="/messages",
|
|
sse_path="/",
|
|
auth=mcp.auth,
|
|
)
|
|
|
|
routes = [
|
|
Mount("/mcp", app=http_app),
|
|
Mount("/mcp/sse", app=sse_app),
|
|
]
|
|
|
|
@asynccontextmanager
|
|
async def lifespan(app: Starlette): # pragma: no cover - integration wiring
|
|
async with AsyncExitStack() as stack:
|
|
await stack.enter_async_context(
|
|
http_app.router.lifespan_context(http_app)
|
|
)
|
|
await stack.enter_async_context(
|
|
sse_app.router.lifespan_context(sse_app)
|
|
)
|
|
yield
|
|
|
|
combined_app = Starlette(routes=routes, lifespan=lifespan)
|
|
combined_app.state.fastmcp_server = mcp
|
|
combined_app.state.http_app = http_app
|
|
combined_app.state.sse_app = sse_app
|
|
return combined_app
|
|
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# Combined lifespan: Temporal init + dedicated MCP transports
|
|
# ---------------------------------------------------------------------------
|
|
|
|
@asynccontextmanager
|
|
async def combined_lifespan(app: FastAPI):
|
|
global temporal_bootstrap_task, _fastapi_mcp_imported
|
|
|
|
logger.info("Starting FuzzForge backend...")
|
|
|
|
# Ensure FastAPI endpoints are exposed via MCP once
|
|
if not _fastapi_mcp_imported:
|
|
try:
|
|
await mcp.import_server(FASTAPI_MCP_ADAPTER)
|
|
_fastapi_mcp_imported = True
|
|
logger.info("Mounted FastAPI endpoints as MCP tools")
|
|
except Exception as exc:
|
|
logger.exception("Failed to import FastAPI endpoints into MCP", exc_info=exc)
|
|
|
|
# Kick off Temporal bootstrap in the background if needed
|
|
if temporal_bootstrap_task is None or temporal_bootstrap_task.done():
|
|
temporal_bootstrap_task = asyncio.create_task(_bootstrap_temporal_with_retries())
|
|
logger.info("Temporal bootstrap task started")
|
|
else:
|
|
logger.info("Temporal bootstrap task already running")
|
|
|
|
# Start MCP transports on shared port (HTTP + SSE)
|
|
mcp_app = create_mcp_transport_app()
|
|
mcp_config = uvicorn.Config(
|
|
app=mcp_app,
|
|
host="0.0.0.0",
|
|
port=8010,
|
|
log_level="info",
|
|
lifespan="on",
|
|
)
|
|
mcp_server = uvicorn.Server(mcp_config)
|
|
mcp_server.install_signal_handlers = lambda: None # type: ignore[assignment]
|
|
mcp_task = asyncio.create_task(mcp_server.serve())
|
|
|
|
async def _wait_for_uvicorn_startup() -> None:
|
|
started_attr = getattr(mcp_server, "started", None)
|
|
if hasattr(started_attr, "wait"):
|
|
await asyncio.wait_for(started_attr.wait(), timeout=10)
|
|
return
|
|
|
|
# Fallback for uvicorn versions where "started" is a bool
|
|
poll_interval = 0.1
|
|
checks = int(10 / poll_interval)
|
|
for _ in range(checks):
|
|
if getattr(mcp_server, "started", False):
|
|
return
|
|
await asyncio.sleep(poll_interval)
|
|
raise asyncio.TimeoutError
|
|
|
|
try:
|
|
await _wait_for_uvicorn_startup()
|
|
except asyncio.TimeoutError: # pragma: no cover - defensive logging
|
|
if mcp_task.done():
|
|
raise RuntimeError("MCP server failed to start") from mcp_task.exception()
|
|
logger.warning("Timed out waiting for MCP server startup; continuing anyway")
|
|
|
|
logger.info("MCP HTTP available at http://0.0.0.0:8010/mcp")
|
|
logger.info("MCP SSE available at http://0.0.0.0:8010/mcp/sse")
|
|
|
|
try:
|
|
yield
|
|
finally:
|
|
logger.info("Shutting down MCP transports...")
|
|
mcp_server.should_exit = True
|
|
mcp_server.force_exit = True
|
|
await asyncio.gather(mcp_task, return_exceptions=True)
|
|
|
|
if temporal_bootstrap_task and not temporal_bootstrap_task.done():
|
|
temporal_bootstrap_task.cancel()
|
|
with suppress(asyncio.CancelledError):
|
|
await temporal_bootstrap_task
|
|
temporal_bootstrap_state.task_running = False
|
|
if not temporal_bootstrap_state.ready:
|
|
temporal_bootstrap_state.status = "stopped"
|
|
temporal_bootstrap_task = None
|
|
|
|
# Close Temporal client
|
|
await temporal_mgr.close()
|
|
logger.info("Shutting down FuzzForge backend...")
|
|
|
|
|
|
app.router.lifespan_context = combined_lifespan
|