Files
fuzzforge_ai/ai/agents/task_agent/QUICKSTART.md
Songbird baace0eac4 Add AI module with A2A wrapper and task agent
- Disable FuzzForge MCP connection (no Prefect backend)
- Add a2a_wrapper module for programmatic A2A agent tasks
- Add task_agent (LiteLLM A2A agent) on port 10900
- Create volumes/env/ for centralized Docker config
- Update docker-compose.yml with task-agent service
- Remove workflow_automation_skill from agent card
2025-10-14 13:05:35 +02:00

1.5 KiB
Raw Blame History

Quick Start Guide

Launch the Agent

From the repository root you can expose the agent through any ADK entry point:

# A2A / HTTP server
adk api_server --a2a --port 8000 agent_with_adk_format

# Browser UI
adk web agent_with_adk_format

# Interactive terminal
adk run agent_with_adk_format

The A2A server exposes the JSON-RPC endpoint at http://localhost:8000/a2a/litellm_agent.

Hot-Swap from the Command Line

Use the bundled helper to change model and prompt via A2A without touching the UI:

python agent_with_adk_format/a2a_hot_swap.py \
  --model openai gpt-4o \
  --prompt "You are concise." \
  --config \
  --context demo-session

The script sends the control messages for you and prints the servers responses. The --context flag lets you reuse the same conversation across multiple invocations.

Follow-up Messages

Once the swaps are applied you can send a user message on the same session:

python agent_with_adk_format/a2a_hot_swap.py \
  --context demo-session \
  --message "Summarise the current configuration in five words."

Clearing the Prompt

python agent_with_adk_format/a2a_hot_swap.py \
  --context demo-session \
  --prompt "" \
  --config

Control Messages (for reference)

Behind the scenes the helper sends plain text messages understood by the callbacks:

  • [HOTSWAP:MODEL:provider/model]
  • [HOTSWAP:PROMPT:text]
  • [HOTSWAP:GET_CONFIG]

You can craft the same messages from any A2A client if you prefer.