Files
fuzzforge_ai/sdk/src/fuzzforge_sdk/docker_logs.py
tduhamel42 60ca088ecf CI/CD Integration with Ephemeral Deployment Model (#14)
* feat: Complete migration from Prefect to Temporal

BREAKING CHANGE: Replaces Prefect workflow orchestration with Temporal

## Major Changes
- Replace Prefect with Temporal for workflow orchestration
- Implement vertical worker architecture (rust, android)
- Replace Docker registry with MinIO for unified storage
- Refactor activities to be co-located with workflows
- Update all API endpoints for Temporal compatibility

## Infrastructure
- New: docker-compose.temporal.yaml (Temporal + MinIO + workers)
- New: workers/ directory with rust and android vertical workers
- New: backend/src/temporal/ (manager, discovery)
- New: backend/src/storage/ (S3-cached storage with MinIO)
- New: backend/toolbox/common/ (shared storage activities)
- Deleted: docker-compose.yaml (old Prefect setup)
- Deleted: backend/src/core/prefect_manager.py
- Deleted: backend/src/services/prefect_stats_monitor.py
- Deleted: Docker registry and insecure-registries requirement

## Workflows
- Migrated: security_assessment workflow to Temporal
- New: rust_test workflow (example/test workflow)
- Deleted: secret_detection_scan (Prefect-based, to be reimplemented)
- Activities now co-located with workflows for independent testing

## API Changes
- Updated: backend/src/api/workflows.py (Temporal submission)
- Updated: backend/src/api/runs.py (Temporal status/results)
- Updated: backend/src/main.py (727 lines, TemporalManager integration)
- Updated: All 16 MCP tools to use TemporalManager

## Testing
-  All services healthy (Temporal, PostgreSQL, MinIO, workers, backend)
-  All API endpoints functional
-  End-to-end workflow test passed (72 findings from vulnerable_app)
-  MinIO storage integration working (target upload/download, results)
-  Worker activity discovery working (6 activities registered)
-  Tarball extraction working
-  SARIF report generation working

## Documentation
- ARCHITECTURE.md: Complete Temporal architecture documentation
- QUICKSTART_TEMPORAL.md: Getting started guide
- MIGRATION_DECISION.md: Why we chose Temporal over Prefect
- IMPLEMENTATION_STATUS.md: Migration progress tracking
- workers/README.md: Worker development guide

## Dependencies
- Added: temporalio>=1.6.0
- Added: boto3>=1.34.0 (MinIO S3 client)
- Removed: prefect>=3.4.18

* feat: Add Python fuzzing vertical with Atheris integration

This commit implements a complete Python fuzzing workflow using Atheris:

## Python Worker (workers/python/)
- Dockerfile with Python 3.11, Atheris, and build tools
- Generic worker.py for dynamic workflow discovery
- requirements.txt with temporalio, boto3, atheris dependencies
- Added to docker-compose.temporal.yaml with dedicated cache volume

## AtherisFuzzer Module (backend/toolbox/modules/fuzzer/)
- Reusable module extending BaseModule
- Auto-discovers fuzz targets (fuzz_*.py, *_fuzz.py, fuzz_target.py)
- Recursive search to find targets in nested directories
- Dynamically loads TestOneInput() function
- Configurable max_iterations and timeout
- Real-time stats callback support for live monitoring
- Returns findings as ModuleFinding objects

## Atheris Fuzzing Workflow (backend/toolbox/workflows/atheris_fuzzing/)
- Temporal workflow for orchestrating fuzzing
- Downloads user code from MinIO
- Executes AtherisFuzzer module
- Uploads results to MinIO
- Cleans up cache after execution
- metadata.yaml with vertical: python for routing

## Test Project (test_projects/python_fuzz_waterfall/)
- Demonstrates stateful waterfall vulnerability
- main.py with check_secret() that leaks progress
- fuzz_target.py with Atheris TestOneInput() harness
- Complete README with usage instructions

## Backend Fixes
- Fixed parameter merging in REST API endpoints (workflows.py)
- Changed workflow parameter passing from positional args to kwargs (manager.py)
- Default parameters now properly merged with user parameters

## Testing
 Worker discovered AtherisFuzzingWorkflow
 Workflow executed end-to-end successfully
 Fuzz target auto-discovered in nested directories
 Atheris ran 100,000 iterations
 Results uploaded and cache cleaned

* chore: Complete Temporal migration with updated CLI/SDK/docs

This commit includes all remaining Temporal migration changes:

## CLI Updates (cli/)
- Updated workflow execution commands for Temporal
- Enhanced error handling and exceptions
- Updated dependencies in uv.lock

## SDK Updates (sdk/)
- Client methods updated for Temporal workflows
- Updated models for new workflow execution
- Updated dependencies in uv.lock

## Documentation Updates (docs/)
- Architecture documentation for Temporal
- Workflow concept documentation
- Resource management documentation (new)
- Debugging guide (new)
- Updated tutorials and how-to guides
- Troubleshooting updates

## README Updates
- Main README with Temporal instructions
- Backend README
- CLI README
- SDK README

## Other
- Updated IMPLEMENTATION_STATUS.md
- Removed old vulnerable_app.tar.gz

These changes complete the Temporal migration and ensure the
CLI/SDK work correctly with the new backend.

* fix: Use positional args instead of kwargs for Temporal workflows

The Temporal Python SDK's start_workflow() method doesn't accept
a 'kwargs' parameter. Workflows must receive parameters as positional
arguments via the 'args' parameter.

Changed from:
  args=workflow_args  # Positional arguments

This fixes the error:
  TypeError: Client.start_workflow() got an unexpected keyword argument 'kwargs'

Workflows now correctly receive parameters in order:
- security_assessment: [target_id, scanner_config, analyzer_config, reporter_config]
- atheris_fuzzing: [target_id, target_file, max_iterations, timeout_seconds]
- rust_test: [target_id, test_message]

* fix: Filter metadata-only parameters from workflow arguments

SecurityAssessmentWorkflow was receiving 7 arguments instead of 2-5.
The issue was that target_path and volume_mode from default_parameters
were being passed to the workflow, when they should only be used by
the system for configuration.

Now filters out metadata-only parameters (target_path, volume_mode)
before passing arguments to workflow execution.

* refactor: Remove Prefect leftovers and volume mounting legacy

Complete cleanup of Prefect migration artifacts:

Backend:
- Delete registry.py and workflow_discovery.py (Prefect-specific files)
- Remove Docker validation from setup.py (no longer needed)
- Remove ResourceLimits and VolumeMount models
- Remove target_path and volume_mode from WorkflowSubmission
- Remove supported_volume_modes from API and discovery
- Clean up metadata.yaml files (remove volume/path fields)
- Simplify parameter filtering in manager.py

SDK:
- Remove volume_mode parameter from client methods
- Remove ResourceLimits and VolumeMount models
- Remove Prefect error patterns from docker_logs.py
- Clean up WorkflowSubmission and WorkflowMetadata models

CLI:
- Remove Volume Modes display from workflow info

All removed features are Prefect-specific or Docker volume mounting
artifacts. Temporal workflows use MinIO storage exclusively.

* feat: Add comprehensive test suite and benchmark infrastructure

- Add 68 unit tests for fuzzer, scanner, and analyzer modules
- Implement pytest-based test infrastructure with fixtures
- Add 6 performance benchmarks with category-specific thresholds
- Configure GitHub Actions for automated testing and benchmarking
- Add test and benchmark documentation

Test coverage:
- AtherisFuzzer: 8 tests
- CargoFuzzer: 14 tests
- FileScanner: 22 tests
- SecurityAnalyzer: 24 tests

All tests passing (68/68)
All benchmarks passing (6/6)

* fix: Resolve all ruff linting violations across codebase

Fixed 27 ruff violations in 12 files:
- Removed unused imports (Depends, Dict, Any, Optional, etc.)
- Fixed undefined workflow_info variable in workflows.py
- Removed dead code with undefined variables in atheris_fuzzer.py
- Changed f-string to regular string where no placeholders used

All files now pass ruff checks for CI/CD compliance.

* fix: Configure CI for unit tests only

- Renamed docker-compose.temporal.yaml → docker-compose.yml for CI compatibility
- Commented out integration-tests job (no integration tests yet)
- Updated test-summary to only depend on lint and unit-tests

CI will now run successfully with 68 unit tests. Integration tests can be added later.

* feat: Add CI/CD integration with ephemeral deployment model

Implements comprehensive CI/CD support for FuzzForge with on-demand worker management:

**Worker Management (v0.7.0)**
- Add WorkerManager for automatic worker lifecycle control
- Auto-start workers from stopped state when workflows execute
- Auto-stop workers after workflow completion
- Health checks and startup timeout handling (90s default)

**CI/CD Features**
- `--fail-on` flag: Fail builds based on SARIF severity levels (error/warning/note/info)
- `--export-sarif` flag: Export findings in SARIF 2.1.0 format
- `--auto-start`/`--auto-stop` flags: Control worker lifecycle
- Exit code propagation: Returns 1 on blocking findings, 0 on success

**Exit Code Fix**
- Add `except typer.Exit: raise` handlers at 3 critical locations
- Move worker cleanup to finally block for guaranteed execution
- Exit codes now propagate correctly even when build fails

**CI Scripts & Examples**
- ci-start.sh: Start FuzzForge services with health checks
- ci-stop.sh: Clean shutdown with volume preservation option
- GitHub Actions workflow example (security-scan.yml)
- GitLab CI pipeline example (.gitlab-ci.example.yml)
- docker-compose.ci.yml: CI-optimized compose file with profiles

**OSS-Fuzz Integration**
- New ossfuzz_campaign workflow for running OSS-Fuzz projects
- OSS-Fuzz worker with Docker-in-Docker support
- Configurable campaign duration and project selection

**Documentation**
- Comprehensive CI/CD integration guide (docs/how-to/cicd-integration.md)
- Updated architecture docs with worker lifecycle details
- Updated workspace isolation documentation
- CLI README with worker management examples

**SDK Enhancements**
- Add get_workflow_worker_info() endpoint
- Worker vertical metadata in workflow responses

**Testing**
- All workflows tested: security_assessment, atheris_fuzzing, secret_detection, cargo_fuzzing
- All monitoring commands tested: stats, crashes, status, finding
- Full CI pipeline simulation verified
- Exit codes verified for success/failure scenarios

Ephemeral CI/CD model: ~3-4GB RAM, ~60-90s startup, runs entirely in CI containers.

* fix: Resolve ruff linting violations in CI/CD code

- Remove unused variables (run_id, defaults, result)
- Remove unused imports
- Fix f-string without placeholders

All CI/CD integration files now pass ruff checks.
2025-10-14 10:13:45 +02:00

387 lines
13 KiB
Python

"""
Docker log integration for enhanced error reporting.
This module provides functionality to fetch and parse Docker container logs
to provide better context for deployment and workflow execution errors.
"""
# Copyright (c) 2025 FuzzingLabs
#
# Licensed under the Business Source License 1.1 (BSL). See the LICENSE file
# at the root of this repository for details.
#
# After the Change Date (four years from publication), this version of the
# Licensed Work will be made available under the Apache License, Version 2.0.
# See the LICENSE-APACHE file or http://www.apache.org/licenses/LICENSE-2.0
#
# Additional attribution and requirements are provided in the NOTICE file.
import logging
import re
import subprocess
import json
from typing import Dict, Any, List, Optional
from datetime import datetime, timezone
from dataclasses import dataclass
logger = logging.getLogger(__name__)
@dataclass
class ContainerLogEntry:
"""A single log entry from a container."""
timestamp: datetime
level: str
message: str
stream: str # 'stdout' or 'stderr'
raw: str
@dataclass
class ContainerDiagnostics:
"""Complete diagnostics for a container."""
container_id: Optional[str]
status: str
exit_code: Optional[int]
error: Optional[str]
logs: List[ContainerLogEntry]
resource_usage: Dict[str, Any]
volume_mounts: List[Dict[str, str]]
class DockerLogIntegration:
"""
Integration with Docker to fetch container logs and diagnostics.
This class provides methods to fetch container logs, parse common error
patterns, and extract meaningful diagnostic information from Docker
containers related to FuzzForge workflow execution.
"""
def __init__(self):
self.docker_available = self._check_docker_availability()
# Common error patterns in container logs
self.error_patterns = {
'permission_denied': [
r'permission denied',
r'operation not permitted',
r'cannot access.*permission denied'
],
'out_of_memory': [
r'out of memory',
r'oom killed',
r'cannot allocate memory'
],
'image_pull_failed': [
r'failed to pull image',
r'pull access denied',
r'image not found'
],
'volume_mount_failed': [
r'invalid mount config',
r'mount denied',
r'no such file or directory.*mount'
],
'network_error': [
r'network is unreachable',
r'connection refused',
r'timeout.*connect'
]
}
def _check_docker_availability(self) -> bool:
"""Check if Docker is available and accessible."""
try:
result = subprocess.run(['docker', 'version', '--format', 'json'],
capture_output=True, text=True, timeout=5)
return result.returncode == 0
except (subprocess.TimeoutExpired, FileNotFoundError, subprocess.SubprocessError):
return False
def get_container_logs(self, container_name_or_id: str, tail: int = 100) -> List[ContainerLogEntry]:
"""
Fetch logs from a Docker container.
Args:
container_name_or_id: Container name or ID
tail: Number of log lines to retrieve
Returns:
List of parsed log entries
"""
if not self.docker_available:
logger.warning("Docker not available, cannot fetch container logs")
return []
try:
cmd = ['docker', 'logs', '--timestamps', '--tail', str(tail), container_name_or_id]
result = subprocess.run(cmd, capture_output=True, text=True, timeout=10)
if result.returncode != 0:
logger.error(f"Failed to fetch logs for container {container_name_or_id}: {result.stderr}")
return []
return self._parse_docker_logs(result.stdout + result.stderr)
except subprocess.TimeoutExpired:
logger.error(f"Timeout fetching logs for container {container_name_or_id}")
return []
except Exception as e:
logger.error(f"Error fetching container logs: {e}")
return []
def _parse_docker_logs(self, raw_logs: str) -> List[ContainerLogEntry]:
"""Parse raw Docker logs into structured entries."""
entries = []
for line in raw_logs.strip().split('\n'):
if not line.strip():
continue
entry = self._parse_log_line(line)
if entry:
entries.append(entry)
return entries
def _parse_log_line(self, line: str) -> Optional[ContainerLogEntry]:
"""Parse a single log line with timestamp."""
# Docker log format: 2023-10-01T12:00:00.000000000Z message
timestamp_match = re.match(r'^(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d+Z)\s+(.*)', line)
if timestamp_match:
timestamp_str, message = timestamp_match.groups()
try:
timestamp = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
except ValueError:
timestamp = datetime.now(timezone.utc)
else:
timestamp = datetime.now(timezone.utc)
message = line
# Determine log level from message content
level = self._extract_log_level(message)
# Determine stream (simplified - Docker doesn't clearly separate in combined output)
stream = 'stderr' if any(keyword in message.lower() for keyword in ['error', 'failed', 'exception']) else 'stdout'
return ContainerLogEntry(
timestamp=timestamp,
level=level,
message=message.strip(),
stream=stream,
raw=line
)
def _extract_log_level(self, message: str) -> str:
"""Extract log level from message content."""
message_lower = message.lower()
if any(keyword in message_lower for keyword in ['error', 'failed', 'exception', 'fatal']):
return 'ERROR'
elif any(keyword in message_lower for keyword in ['warning', 'warn']):
return 'WARNING'
elif any(keyword in message_lower for keyword in ['info', 'information']):
return 'INFO'
elif any(keyword in message_lower for keyword in ['debug']):
return 'DEBUG'
else:
return 'INFO'
def get_container_diagnostics(self, container_name_or_id: str) -> ContainerDiagnostics:
"""
Get complete diagnostics for a container including logs, status, and resource usage.
Args:
container_name_or_id: Container name or ID
Returns:
Complete container diagnostics
"""
if not self.docker_available:
return ContainerDiagnostics(
container_id=None,
status="unknown",
exit_code=None,
error="Docker not available",
logs=[],
resource_usage={},
volume_mounts=[]
)
# Get container inspect data
inspect_data = self._get_container_inspect(container_name_or_id)
# Get logs
logs = self.get_container_logs(container_name_or_id)
# Extract key information
if inspect_data:
state = inspect_data.get('State', {})
config = inspect_data.get('Config', {})
host_config = inspect_data.get('HostConfig', {})
status = state.get('Status', 'unknown')
exit_code = state.get('ExitCode')
error = state.get('Error', '')
# Get volume mounts
mounts = inspect_data.get('Mounts', [])
volume_mounts = [
{
'source': mount.get('Source', ''),
'destination': mount.get('Destination', ''),
'mode': mount.get('Mode', ''),
'type': mount.get('Type', '')
}
for mount in mounts
]
# Get resource limits
resource_usage = {
'memory_limit': host_config.get('Memory', 0),
'cpu_limit': host_config.get('CpuQuota', 0),
'cpu_period': host_config.get('CpuPeriod', 0)
}
else:
status = "not_found"
exit_code = None
error = f"Container {container_name_or_id} not found"
volume_mounts = []
resource_usage = {}
return ContainerDiagnostics(
container_id=container_name_or_id,
status=status,
exit_code=exit_code,
error=error,
logs=logs,
resource_usage=resource_usage,
volume_mounts=volume_mounts
)
def _get_container_inspect(self, container_name_or_id: str) -> Optional[Dict[str, Any]]:
"""Get container inspection data."""
try:
cmd = ['docker', 'inspect', container_name_or_id]
result = subprocess.run(cmd, capture_output=True, text=True, timeout=5)
if result.returncode != 0:
return None
data = json.loads(result.stdout)
return data[0] if data else None
except (subprocess.TimeoutExpired, json.JSONDecodeError, Exception) as e:
logger.debug(f"Failed to inspect container {container_name_or_id}: {e}")
return None
def analyze_error_patterns(self, logs: List[ContainerLogEntry]) -> Dict[str, List[str]]:
"""
Analyze logs for common error patterns.
Args:
logs: List of log entries to analyze
Returns:
Dictionary mapping error types to matching log messages
"""
detected_errors = {}
for error_type, patterns in self.error_patterns.items():
matches = []
for log_entry in logs:
for pattern in patterns:
if re.search(pattern, log_entry.message, re.IGNORECASE):
matches.append(log_entry.message)
break # Don't match the same message multiple times
if matches:
detected_errors[error_type] = matches
return detected_errors
def get_container_names_by_label(self, label_filter: str) -> List[str]:
"""
Get container names that match a specific label filter.
Args:
label_filter: Label filter (e.g., "prefect.flow-run-id=12345")
Returns:
List of container names
"""
if not self.docker_available:
return []
try:
cmd = ['docker', 'ps', '-a', '--filter', f'label={label_filter}', '--format', '{{.Names}}']
result = subprocess.run(cmd, capture_output=True, text=True, timeout=5)
if result.returncode != 0:
return []
return [name.strip() for name in result.stdout.strip().split('\n') if name.strip()]
except Exception as e:
logger.debug(f"Failed to get containers by label {label_filter}: {e}")
return []
def suggest_fixes(self, error_analysis: Dict[str, List[str]]) -> List[str]:
"""
Suggest fixes based on detected error patterns.
Args:
error_analysis: Result from analyze_error_patterns()
Returns:
List of suggested fixes
"""
suggestions = []
if 'permission_denied' in error_analysis:
suggestions.extend([
"Check file permissions on the target path",
"Ensure the Docker daemon has access to the mounted volumes",
"Try running with elevated privileges or adjust volume ownership"
])
if 'out_of_memory' in error_analysis:
suggestions.extend([
"Increase memory limits for the workflow",
"Check if the target files are too large for available memory",
"Consider using streaming processing for large datasets"
])
if 'image_pull_failed' in error_analysis:
suggestions.extend([
"Check network connectivity to Docker registry",
"Verify image name and tag are correct",
"Ensure Docker registry credentials are configured"
])
if 'volume_mount_failed' in error_analysis:
suggestions.extend([
"Verify the target path exists and is accessible",
"Check volume mount syntax and permissions",
"Ensure the path is not already in use by another process"
])
if 'network_error' in error_analysis:
suggestions.extend([
"Check network connectivity",
"Verify backend services are running (docker-compose up -d)",
"Check firewall settings and port availability"
])
if not suggestions:
suggestions.append("Review the container logs above for specific error details")
return suggestions
# Global instance for easy access
docker_integration = DockerLogIntegration()