mirror of
https://github.com/FuzzingLabs/fuzzforge_ai.git
synced 2026-02-12 21:12:56 +00:00
- Disable FuzzForge MCP connection (no Prefect backend) - Add a2a_wrapper module for programmatic A2A agent tasks - Add task_agent (LiteLLM A2A agent) on port 10900 - Create volumes/env/ for centralized Docker config - Update docker-compose.yml with task-agent service - Remove workflow_automation_skill from agent card
1.5 KiB
1.5 KiB
Quick Start Guide
Launch the Agent
From the repository root you can expose the agent through any ADK entry point:
# A2A / HTTP server
adk api_server --a2a --port 8000 agent_with_adk_format
# Browser UI
adk web agent_with_adk_format
# Interactive terminal
adk run agent_with_adk_format
The A2A server exposes the JSON-RPC endpoint at http://localhost:8000/a2a/litellm_agent.
Hot-Swap from the Command Line
Use the bundled helper to change model and prompt via A2A without touching the UI:
python agent_with_adk_format/a2a_hot_swap.py \
--model openai gpt-4o \
--prompt "You are concise." \
--config \
--context demo-session
The script sends the control messages for you and prints the server’s responses. The --context flag lets you reuse the same conversation across multiple invocations.
Follow-up Messages
Once the swaps are applied you can send a user message on the same session:
python agent_with_adk_format/a2a_hot_swap.py \
--context demo-session \
--message "Summarise the current configuration in five words."
Clearing the Prompt
python agent_with_adk_format/a2a_hot_swap.py \
--context demo-session \
--prompt "" \
--config
Control Messages (for reference)
Behind the scenes the helper sends plain text messages understood by the callbacks:
[HOTSWAP:MODEL:provider/model][HOTSWAP:PROMPT:text][HOTSWAP:GET_CONFIG]
You can craft the same messages from any A2A client if you prefer.