Files
fuzzforge_ai/ai/agents/task_agent/README.md
tduhamel42 943bc9a114 Release v0.7.3 - Android workflows, LiteLLM integration, ARM64 support (#32)
* ci: add worker validation and Docker build checks

Add automated validation to prevent worker-related issues:

**Worker Validation Script:**
- New script: .github/scripts/validate-workers.sh
- Validates all workers in docker-compose.yml exist
- Checks required files: Dockerfile, requirements.txt, worker.py
- Verifies files are tracked by git (not gitignored)
- Detects gitignore issues that could hide workers

**CI Workflow Updates:**
- Added validate-workers job (runs on every PR)
- Added build-workers job (runs if workers/ modified)
- Uses Docker Buildx for caching
- Validates Docker images build successfully
- Updated test-summary to check validation results

**PR Template:**
- New pull request template with comprehensive checklist
- Specific section for worker-related changes
- Reminds contributors to validate worker files
- Includes documentation and changelog reminders

These checks would have caught the secrets worker gitignore issue.

Implements Phase 1 improvements from CI/CD quality assessment.

* fix: add dev branch to test workflow triggers

The test workflow was configured for 'develop' but the actual branch is named 'dev'.
This caused tests not to run on PRs to dev branch.

Now tests will run on:
- PRs to: main, master, dev, develop
- Pushes to: main, master, dev, develop, feature/**

* fix: properly detect worker file changes in CI

The previous condition used invalid GitHub context field.
Now uses git diff to properly detect changes to workers/ or docker-compose.yml.

Behavior:
- Job always runs the check step
- Detects if workers/ or docker-compose.yml modified
- Only builds Docker images if workers actually changed
- Shows clear skip message when no worker changes detected

* feat: Add Python SAST workflow with three security analysis tools

Implements Issue #5 - Python SAST workflow that combines:
- Dependency scanning (pip-audit) for CVE detection
- Security linting (Bandit) for vulnerability patterns
- Type checking (Mypy) for type safety issues

## Changes

**New Modules:**
- `DependencyScanner`: Scans Python dependencies for known CVEs using pip-audit
- `BanditAnalyzer`: Analyzes Python code for security issues using Bandit
- `MypyAnalyzer`: Checks Python code for type safety issues using Mypy

**New Workflow:**
- `python_sast`: Temporal workflow that orchestrates all three SAST tools
  - Runs tools in parallel for fast feedback (3-5 min vs hours for fuzzing)
  - Generates unified SARIF report with findings from all tools
  - Supports configurable severity/confidence thresholds

**Updates:**
- Added SAST dependencies to Python worker (bandit, pip-audit, mypy)
- Updated module __init__.py files to export new analyzers
- Added type_errors.py test file to vulnerable_app for Mypy validation

## Testing

Workflow tested successfully on vulnerable_app:
-  Bandit: Detected 9 security issues (command injection, unsafe functions)
-  Mypy: Detected 5 type errors
-  DependencyScanner: Ran successfully (no CVEs in test dependencies)
-  SARIF export: Generated valid SARIF with 14 total findings

* fix: Remove unused imports to pass linter

* fix: resolve live monitoring bug, remove deprecated parameters, and auto-start Python worker

- Fix live monitoring style error by calling _live_monitor() helper directly
- Remove default_parameters duplication from 10 workflow metadata files
- Remove deprecated volume_mode parameter from 26 files across CLI, SDK, backend, and docs
- Configure Python worker to start automatically with docker compose up
- Clean up constants, validation, completion, and example files

Fixes #
- Live monitoring now works correctly with --live flag
- Workflow metadata follows JSON Schema standard
- Cleaner codebase without deprecated volume_mode
- Python worker (most commonly used) starts by default

* fix: resolve linter errors and optimize CI worker builds

- Remove unused Literal import from backend findings model
- Remove unnecessary f-string prefixes in CLI findings command
- Optimize GitHub Actions to build only modified workers
  - Detect specific worker changes (python, secrets, rust, android, ossfuzz)
  - Build only changed workers instead of all 5
  - Build all workers if docker-compose.yml changes
  - Significantly reduces CI build time

* feat: Add Android static analysis workflow with Jadx, OpenGrep, and MobSF

Comprehensive Android security testing workflow converted from Prefect to Temporal architecture:

Modules (3):
- JadxDecompiler: APK to Java source code decompilation
- OpenGrepAndroid: Static analysis with Android-specific security rules
- MobSFScanner: Comprehensive mobile security framework integration

Custom Rules (13):
- clipboard-sensitive-data, hardcoded-secrets, insecure-data-storage
- insecure-deeplink, insecure-logging, intent-redirection
- sensitive_data_sharedPreferences, sqlite-injection
- vulnerable-activity, vulnerable-content-provider, vulnerable-service
- webview-javascript-enabled, webview-load-arbitrary-url

Workflow:
- 6-phase Temporal workflow: download → Jadx → OpenGrep → MobSF → SARIF → upload
- 4 activities: decompile_with_jadx, scan_with_opengrep, scan_with_mobsf, generate_android_sarif
- SARIF output combining findings from all security tools

Docker Worker:
- ARM64 Mac compatibility via amd64 platform emulation
- Pre-installed: Android SDK, Jadx 1.4.7, OpenGrep 1.45.0, MobSF 3.9.7
- MobSF runs as background service with API key auto-generation
- Added aiohttp for async HTTP communication

Test APKs:
- BeetleBug.apk and shopnest.apk for workflow validation

* fix(android): correct activity names and MobSF API key generation

- Fix activity names in workflow.py (get_target, upload_results, cleanup_cache)
- Fix MobSF API key generation in Dockerfile startup script (cut delimiter)
- Update activity parameter signatures to match actual implementations
- Workflow now executes successfully with Jadx and OpenGrep

* feat: add platform-aware worker architecture with ARM64 support

Implement platform-specific Dockerfile selection and graceful tool degradation to support both x86_64 and ARM64 (Apple Silicon) platforms.

**Backend Changes:**
- Add system info API endpoint (/system/info) exposing host filesystem paths
- Add FUZZFORGE_HOST_ROOT environment variable to backend service
- Add graceful degradation in MobSF activity for ARM64 platforms

**CLI Changes:**
- Implement multi-strategy path resolution (backend API, .fuzzforge marker, env var)
- Add platform detection (linux/amd64 vs linux/arm64)
- Add worker metadata.yaml reading for platform capabilities
- Auto-select appropriate Dockerfile based on detected platform
- Pass platform-specific env vars to docker-compose

**Worker Changes:**
- Create workers/android/metadata.yaml defining platform capabilities
- Rename Dockerfile -> Dockerfile.amd64 (full toolchain with MobSF)
- Create Dockerfile.arm64 (excludes MobSF due to Rosetta 2 incompatibility)
- Update docker-compose.yml to use ${ANDROID_DOCKERFILE} variable

**Workflow Changes:**
- Handle MobSF "skipped" status gracefully in workflow
- Log clear warnings when tools are unavailable on platform

**Key Features:**
- Automatic platform detection and Dockerfile selection
- Graceful degradation when tools unavailable (MobSF on ARM64)
- Works from any directory (backend API provides paths)
- Manual override via environment variables
- Clear user feedback about platform and selected Dockerfile

**Benefits:**
- Android workflow now works on Apple Silicon Macs
- No code changes needed for other workflows
- Convention established for future platform-specific workers

Closes: MobSF Rosetta 2 incompatibility issue
Implements: Platform-aware worker architecture (Option B)

* fix: make MobSFScanner import conditional for ARM64 compatibility

- Add try-except block to conditionally import MobSFScanner in modules/android/__init__.py
- Allows Android worker to start on ARM64 without MobSF dependencies (aiohttp)
- MobSF activity gracefully skips on ARM64 with clear warning message
- Remove workflow path detection logic (not needed - workflows receive directories)

Platform-aware architecture fully functional on ARM64:
- CLI detects ARM64 and selects Dockerfile.arm64 automatically
- Worker builds and runs without MobSF on ARM64
- Jadx successfully decompiles APKs (4145 files from BeetleBug.apk)
- OpenGrep finds security vulnerabilities (8 issues found)
- MobSF gracefully skips with warning on ARM64
- Graceful degradation working as designed

Tested with:
  ff workflow run android_static_analysis test_projects/android_test/ \
    --wait --no-interactive apk_path=BeetleBug.apk decompile_apk=true

Results: 8 security findings (1 ERROR, 7 WARNINGS)

* docs: update CHANGELOG with Android workflow and ARM64 support

Added [Unreleased] section documenting:
- Android Static Analysis Workflow (Jadx, OpenGrep, MobSF)
- Platform-Aware Worker Architecture with ARM64 support
- Python SAST Workflow
- CI/CD improvements and worker validation
- CLI enhancements
- Bug fixes and technical changes

Fixed date typo: 2025-01-16 → 2025-10-16

* fix: resolve linter errors in Android modules

- Remove unused imports from mobsf_scanner.py (asyncio, hashlib, json, Optional)
- Remove unused variables from opengrep_android.py (start_col, end_col)
- Remove duplicate Path import from workflow.py

* ci: support multi-platform Dockerfiles in worker validation

Updated worker validation script to accept both:
- Single Dockerfile pattern (existing workers)
- Multi-platform Dockerfile pattern (Dockerfile.amd64, Dockerfile.arm64, etc.)

This enables platform-aware worker architectures like the Android worker
which uses different Dockerfiles for x86_64 and ARM64 platforms.

* Feature/litellm proxy (#27)

* feat: seed governance config and responses routing

* Add env-configurable timeout for proxy providers

* Integrate LiteLLM OTEL collector and update docs

* Make .env.litellm optional for LiteLLM proxy

* Add LiteLLM proxy integration with model-agnostic virtual keys

Changes:
- Bootstrap generates 3 virtual keys with individual budgets (CLI: $100, Task-Agent: $25, Cognee: $50)
- Task-agent loads config at runtime via entrypoint script to wait for bootstrap completion
- All keys are model-agnostic by default (no LITELLM_DEFAULT_MODELS restrictions)
- Bootstrap handles database/env mismatch after docker prune by deleting stale aliases
- CLI and Cognee configured to use LiteLLM proxy with virtual keys
- Added comprehensive documentation in volumes/env/README.md

Technical details:
- task-agent entrypoint waits for keys in .env file before starting uvicorn
- Bootstrap creates/updates TASK_AGENT_API_KEY, COGNEE_API_KEY, and OPENAI_API_KEY
- Removed hardcoded API keys from docker-compose.yml
- All services route through http://localhost:10999 proxy

* Fix CLI not loading virtual keys from global .env

Project .env files with empty OPENAI_API_KEY values were overriding
the global virtual keys. Updated _load_env_file_if_exists to only
override with non-empty values.

* Fix agent executor not passing API key to LiteLLM

The agent was initializing LiteLlm without api_key or api_base,
causing authentication errors when using the LiteLLM proxy. Now
reads from OPENAI_API_KEY/LLM_API_KEY and LLM_ENDPOINT environment
variables and passes them to LiteLlm constructor.

* Auto-populate project .env with virtual key from global config

When running 'ff init', the command now checks for a global
volumes/env/.env file and automatically uses the OPENAI_API_KEY
virtual key if found. This ensures projects work with LiteLLM
proxy out of the box without manual key configuration.

* docs: Update README with LiteLLM configuration instructions

Add note about LITELLM_GEMINI_API_KEY configuration and clarify that OPENAI_API_KEY default value should not be changed as it's used for the LLM proxy.

* Refactor workflow parameters to use JSON Schema defaults

Consolidates parameter defaults into JSON Schema format, removing the separate default_parameters field. Adds extract_defaults_from_json_schema() helper to extract defaults from the standard schema structure. Updates LiteLLM proxy config to use LITELLM_OPENAI_API_KEY environment variable.

* Remove .env.example from task_agent

* Fix MDX syntax error in llm-proxy.md

* fix: apply default parameters from metadata.yaml automatically

Fixed TemporalManager.run_workflow() to correctly apply default parameter
values from workflow metadata.yaml files when parameters are not provided
by the caller.

Previous behavior:
- When workflow_params was empty {}, the condition
  `if workflow_params and 'parameters' in metadata` would fail
- Parameters would not be extracted from schema, resulting in workflows
  receiving only target_id with no other parameters

New behavior:
- Removed the `workflow_params and` requirement from the condition
- Now explicitly checks for defaults in parameter spec
- Applies defaults from metadata.yaml automatically when param not provided
- Workflows receive all parameters with proper fallback:
  provided value > metadata default > None

This makes metadata.yaml the single source of truth for parameter defaults,
removing the need for workflows to implement defensive default handling.

Affected workflows:
- llm_secret_detection (was failing with KeyError)
- All other workflows now benefit from automatic default application

Co-authored-by: tduhamel42 <tduhamel@fuzzinglabs.com>

* fix: add default values to llm_analysis workflow parameters

Resolves validation error where agent_url was None when not explicitly provided. The TemporalManager applies defaults from metadata.yaml, not from module input schemas, so all parameters need defaults in the workflow metadata.

Changes:
- Add default agent_url, llm_model (gpt-5-mini), llm_provider (openai)
- Expand file_patterns to 45 comprehensive patterns covering code, configs, secrets, and Docker files
- Increase default limits: max_files (10), max_file_size (100KB), timeout (90s)

* refactor: replace .env.example with .env.template in documentation

- Remove volumes/env/.env.example file
- Update all documentation references to use .env.template instead
- Update bootstrap script error message
- Update .gitignore comment

* feat(cli): add worker management commands with improved progress feedback

Add comprehensive CLI commands for managing Temporal workers:
- ff worker list - List workers with status and uptime
- ff worker start <name> - Start specific worker with optional rebuild
- ff worker stop - Safely stop all workers without affecting core services

Improvements:
- Live progress display during worker startup with Rich Status spinner
- Real-time elapsed time counter and container state updates
- Health check status tracking (starting → unhealthy → healthy)
- Helpful contextual hints at 10s, 30s, 60s intervals
- Better timeout messages showing last known state

Worker management enhancements:
- Use 'docker compose' (space) instead of 'docker-compose' (hyphen)
- Stop workers individually with 'docker stop' to avoid stopping core services
- Platform detection and Dockerfile selection (ARM64/AMD64)

Documentation:
- Updated docker-setup.md with CLI commands as primary method
- Created comprehensive cli-reference.md with all commands and examples
- Added worker management best practices

* fix: MobSF scanner now properly parses files dict structure

MobSF returns 'files' as a dict (not list):
{"filename": "line_numbers"}

The parser was treating it as a list, causing zero findings
to be extracted. Now properly iterates over the dict and
creates one finding per affected file with correct line numbers
and metadata (CWE, OWASP, MASVS, CVSS).

Fixed in both code_analysis and behaviour sections.

* chore: bump version to 0.7.3

* docs: fix broken documentation links in cli-reference

* chore: add worker startup documentation and cleanup .gitignore

- Add workflow-to-worker mapping tables across documentation
- Update troubleshooting guide with worker requirements section
- Enhance getting started guide with worker examples
- Add quick reference to docker setup guide
- Add WEEK_SUMMARY*.md pattern to .gitignore

* docs: update CHANGELOG with missing versions and recent changes

- Add Unreleased section for post-v0.7.3 documentation updates
- Add v0.7.2 entry with bug fixes and worker improvements
- Document that v0.7.1 was re-tagged as v0.7.2
- Fix v0.6.0 date to "Undocumented" (no tag exists)
- Add version comparison links for easier navigation

* chore: bump all package versions to 0.7.3 for consistency

* Update GitHub link to fuzzforge_ai

---------

Co-authored-by: Songbird99 <150154823+Songbird99@users.noreply.github.com>
Co-authored-by: Songbird <Songbirdx99@gmail.com>
2025-11-06 11:07:50 +01:00

11 KiB

LiteLLM Agent with Hot-Swap Support

A flexible AI agent powered by LiteLLM that supports runtime hot-swapping of models and system prompts. Compatible with ADK and A2A protocols.

Features

  • 🔄 Hot-Swap Models: Change LLM models on-the-fly without restarting
  • 📝 Dynamic Prompts: Update system prompts during conversation
  • 🌐 Multi-Provider Support: Works with OpenAI, Anthropic, Google, OpenRouter, and more
  • 🔌 A2A Compatible: Can be served as an A2A agent
  • 🛠️ ADK Integration: Run with adk web, adk run, or adk api_server

Architecture

task_agent/
├── __init__.py              # Exposes root_agent for ADK
├── a2a_hot_swap.py          # JSON-RPC helper for hot-swapping
├── README.md                # This guide
├── QUICKSTART.md            # Quick-start walkthrough
├── .env                     # Active environment (gitignored)
├── .env.example             # Environment template
└── litellm_agent/
    ├── __init__.py
    ├── agent.py             # Main agent implementation
    ├── agent.json           # A2A agent card
    ├── callbacks.py         # ADK callbacks
    ├── config.py            # Defaults and state keys
    ├── control.py           # HOTSWAP message helpers
    ├── prompts.py           # Base instruction
    ├── state.py             # Session state utilities
    └── tools.py             # set_model / set_prompt / get_config

Setup

1. Environment Configuration

Copying the example file is optional—the repository already ships with a root-level .env seeded with defaults. Adjust the values at the package root:

cd task_agent
# Optionally refresh from the template
# cp .env.example .env

Edit .env (or .env.example) and add your proxy + API keys. The agent must be restarted after changes so the values are picked up:

# Route every request through the proxy container (use http://localhost:10999 from the host)
FF_LLM_PROXY_BASE_URL=http://llm-proxy:4000

# Default model + provider the agent boots with
LITELLM_MODEL=openai/gpt-4o-mini
LITELLM_PROVIDER=openai

# Virtual key issued by the proxy to the task agent (bootstrap replaces the placeholder)
OPENAI_API_KEY=sk-proxy-default

# Upstream keys stay inside the proxy. Store real secrets under the LiteLLM
# aliases and the bootstrapper mirrors them into .env.litellm for the proxy container.
LITELLM_OPENAI_API_KEY=your_real_openai_api_key
LITELLM_ANTHROPIC_API_KEY=your_real_anthropic_key
LITELLM_GEMINI_API_KEY=your_real_gemini_key
LITELLM_MISTRAL_API_KEY=your_real_mistral_key
LITELLM_OPENROUTER_API_KEY=your_real_openrouter_key

When running the agent outside of Docker, swap FF_LLM_PROXY_BASE_URL to the host port (default http://localhost:10999).

The bootstrap container provisions LiteLLM, copies provider secrets into volumes/env/.env.litellm, and rewrites volumes/env/.env with the virtual key. Populate the LITELLM_*_API_KEY values before the first launch so the proxy can reach your upstream providers as soon as the bootstrap script runs.

2. Install Dependencies

pip install "google-adk" "a2a-sdk[all]" "python-dotenv" "litellm"

3. Run in Docker

Build the container (this image can be pushed to any registry or run locally):

docker build -t litellm-hot-swap:latest task_agent

Provide environment configuration at runtime (either pass variables individually or mount a file):

docker run \
  -p 8000:8000 \
  --env-file task_agent/.env \
  litellm-hot-swap:latest

The container starts Uvicorn with the ADK app (main.py) listening on port 8000.

Running the Agent

Start the web interface:

adk web task_agent

Tip: before launching adk web/adk run/adk api_server, ensure the root-level .env contains valid API keys for any provider you plan to hot-swap to (e.g. set OPENAI_API_KEY before switching to openai/gpt-4o).

Open http://localhost:8000 in your browser and interact with the agent.

Option 2: ADK Terminal

Run in terminal mode:

adk run task_agent

Option 3: A2A API Server

Start as an A2A-compatible API server:

adk api_server --a2a --port 8000 task_agent

The agent will be available at: http://localhost:8000/a2a/litellm_agent

Command-line helper

Use the bundled script to drive hot-swaps and user messages over A2A:

python task_agent/a2a_hot_swap.py \
  --url http://127.0.0.1:8000/a2a/litellm_agent \
  --model openai gpt-4o \
  --prompt "You are concise." \
  --config \
  --context demo-session

To send a follow-up prompt in the same session (with a larger timeout for long answers):

python task_agent/a2a_hot_swap.py \
  --url http://127.0.0.1:8000/a2a/litellm_agent \
  --model openai gpt-4o \
  --prompt "You are concise." \
  --message "Give me a fuzzing harness." \
  --context demo-session \
  --timeout 120

Ensure the corresponding provider keys are present in .env (or passed via environment variables) before issuing model swaps.

Hot-Swap Tools

The agent provides three special tools:

1. set_model - Change the LLM Model

Change the model during conversation:

User: Use the set_model tool to change to gpt-4o with openai provider
Agent: ✅ Model configured to: openai/gpt-4o
       This change is active now!

Parameters:

  • model: Model name (e.g., "gpt-4o", "claude-3-sonnet-20240229")
  • custom_llm_provider: Optional provider prefix (e.g., "openai", "anthropic", "openrouter")

Examples:

  • OpenAI: set_model(model="gpt-4o", custom_llm_provider="openai")
  • Anthropic: set_model(model="claude-3-sonnet-20240229", custom_llm_provider="anthropic")
  • Google: set_model(model="gemini-2.0-flash-001", custom_llm_provider="gemini")

2. set_prompt - Change System Prompt

Update the system instructions:

User: Use set_prompt to change my behavior to "You are a helpful coding assistant"
Agent: ✅ System prompt updated:
       You are a helpful coding assistant

       This change is active now!

3. get_config - View Configuration

Check current model and prompt:

User: Use get_config to show me your configuration
Agent: 📊 Current Configuration:
       ━━━━━━━━━━━━━━━━━━━━━━
       Model: openai/gpt-4o
       System Prompt: You are a helpful coding assistant
       ━━━━━━━━━━━━━━━━━━━━━━

Testing

Basic A2A Client Test

python agent/test_a2a_client.py

Hot-Swap Functionality Test

python agent/test_hotswap.py

This will:

  1. Check initial configuration
  2. Query with default model
  3. Hot-swap to GPT-4o
  4. Verify model changed
  5. Change system prompt
  6. Test new prompt behavior
  7. Hot-swap to Claude
  8. Verify final configuration

Command-Line Hot-Swap Helper

You can trigger model and prompt changes directly against the A2A endpoint without the interactive CLI:

# Start the agent first (in another terminal):
adk api_server --a2a --port 8000 task_agent

# Apply swaps via pure A2A calls
python task_agent/a2a_hot_swap.py --model openai gpt-4o --prompt "You are concise." --config
python task_agent/a2a_hot_swap.py --model anthropic claude-3-sonnet-20240229 --context shared-session --config
python task_agent/a2a_hot_swap.py --prompt "" --context shared-session --config  # Clear the prompt and show current state

--model accepts either provider/model or a provider/model pair. Add --context if you want to reuse the same conversation across invocations. Use --config to dump the agent's configuration after the changes are applied.

Supported Models

OpenAI

  • openai/gpt-4o
  • openai/gpt-4-turbo
  • openai/gpt-3.5-turbo

Anthropic

  • anthropic/claude-3-opus-20240229
  • anthropic/claude-3-sonnet-20240229
  • anthropic/claude-3-haiku-20240307

Google

  • gemini/gemini-2.0-flash-001
  • gemini/gemini-2.5-pro-exp-03-25
  • vertex_ai/gemini-2.0-flash-001

OpenRouter

  • openrouter/anthropic/claude-3-opus
  • openrouter/openai/gpt-4
  • Any model from OpenRouter catalog

How It Works

Session State

  • Model and prompt settings are stored in session state
  • Each session maintains its own configuration
  • Settings persist across messages in the same session

Hot-Swap Mechanism

  1. Tools update session state with new model/prompt
  2. before_agent_callback checks for changes
  3. If model changed, directly updates: agent.model = LiteLlm(model=new_model)
  4. Dynamic instruction function reads custom prompt from session state

A2A Compatibility

  • Agent card at agent.json defines A2A metadata
  • Served at /a2a/litellm_agent endpoint
  • Compatible with A2A client protocol

Example Usage

Interactive Session

from a2a.client import A2AClient
import asyncio

async def chat():
    client = A2AClient("http://localhost:8000/a2a/litellm_agent")
    context_id = "my-session-123"

    # Start with default model
    async for msg in client.send_message("Hello!", context_id=context_id):
        print(msg)

    # Switch to GPT-4
    async for msg in client.send_message(
        "Use set_model with model gpt-4o and provider openai",
        context_id=context_id
    ):
        print(msg)

    # Continue with new model
    async for msg in client.send_message(
        "Help me write a function",
        context_id=context_id
    ):
        print(msg)

asyncio.run(chat())

Troubleshooting

Model Not Found

Connection Refused

  • Ensure the agent is running (adk api_server --a2a task_agent)
  • Check the port matches (default: 8000)
  • Verify no firewall blocking localhost

Hot-Swap Not Working

  • Check that you're using the same context_id across messages
  • Ensure the tool is being called (not just asked to switch)
  • Look for 🔄 Hot-swapped model to: in server logs

Development

Adding New Tools

async def my_tool(tool_ctx: ToolContext, param: str) -> str:
    """Your tool description."""
    # Access session state
    tool_ctx.state["my_key"] = "my_value"
    return "Tool result"

# Add to agent
root_agent = LlmAgent(
    # ...
    tools=[set_model, set_prompt, get_config, my_tool],
)

Modifying Callbacks

async def after_model_callback(
    callback_context: CallbackContext,
    llm_response: LlmResponse
) -> Optional[LlmResponse]:
    """Modify response after model generates it."""
    # Your logic here
    return llm_response

License

Apache 2.0