Files
fuzzforge_ai/ai/llm.txt
Tanguy Duhamel 323a434c73 Initial commit
2025-09-29 21:26:41 +02:00

94 lines
3.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
FuzzForge AI LLM Configuration Guide
===================================
This note summarises the environment variables and libraries that drive LiteLLM (via the Google ADK runtime) inside the FuzzForge AI module. For complete matrices and advanced examples, read `docs/advanced/configuration.md`.
Core Libraries
--------------
- `google-adk` hosts the agent runtime, memory services, and LiteLLM bridge.
- `litellm` provider-agnostic LLM client used by ADK and the executor.
- Provider SDKs install the SDK that matches your target backend (`openai`, `anthropic`, `google-cloud-aiplatform`, `groq`, etc.).
- Optional extras: `agentops` for tracing, `cognee[all]` for knowledge-graph ingestion, `ollama` CLI for running local models.
Quick install foundation::
```
pip install google-adk litellm openai
```
Add any provider-specific SDKs (for example `pip install anthropic groq`) on top of that base.
Baseline Setup
--------------
Copy `.fuzzforge/.env.template` to `.fuzzforge/.env` and set the core fields:
```
LLM_PROVIDER=openai
LITELLM_MODEL=gpt-5-mini
OPENAI_API_KEY=sk-your-key
FUZZFORGE_MCP_URL=http://localhost:8010/mcp
SESSION_PERSISTENCE=sqlite
MEMORY_SERVICE=inmemory
```
LiteLLM Provider Examples
-------------------------
OpenAI-compatible (Azure, etc.)::
```
LLM_PROVIDER=azure_openai
LITELLM_MODEL=gpt-4o-mini
LLM_API_KEY=sk-your-azure-key
LLM_ENDPOINT=https://your-resource.openai.azure.com
```
Anthropic::
```
LLM_PROVIDER=anthropic
LITELLM_MODEL=claude-3-haiku-20240307
ANTHROPIC_API_KEY=sk-your-key
```
Ollama (local)::
```
LLM_PROVIDER=ollama_chat
LITELLM_MODEL=codellama:latest
OLLAMA_API_BASE=http://localhost:11434
```
Run `ollama pull codellama:latest` so the adapter can respond immediately.
Vertex AI::
```
LLM_PROVIDER=vertex_ai
LITELLM_MODEL=gemini-1.5-pro
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
```
Provider Checklist
------------------
- **OpenAI / Azure OpenAI**: `LLM_PROVIDER`, `LITELLM_MODEL`, API key, optional endpoint + API version (Azure).
- **Anthropic**: `LLM_PROVIDER=anthropic`, `LITELLM_MODEL`, `ANTHROPIC_API_KEY`.
- **Google Vertex AI**: `LLM_PROVIDER=vertex_ai`, `LITELLM_MODEL`, `GOOGLE_APPLICATION_CREDENTIALS`, `GOOGLE_CLOUD_PROJECT`.
- **Groq**: `LLM_PROVIDER=groq`, `LITELLM_MODEL`, `GROQ_API_KEY`.
- **Ollama / Local**: `LLM_PROVIDER=ollama_chat`, `LITELLM_MODEL`, `OLLAMA_API_BASE`, and the model pulled locally (`ollama pull <model>`).
Knowledge Graph Add-ons
-----------------------
Set these only if you plan to use Cognee project graphs:
```
LLM_COGNEE_PROVIDER=openai
LLM_COGNEE_MODEL=gpt-5-mini
LLM_COGNEE_API_KEY=sk-your-key
```
Tracing & Debugging
-------------------
- Provide `AGENTOPS_API_KEY` to enable hosted traces for every conversation.
- Set `FUZZFORGE_DEBUG=1` (and optionally `LOG_LEVEL=DEBUG`) for verbose executor output.
- Restart the agent after changing environment variables; LiteLLM loads configuration on boot.
Further Reading
---------------
`docs/advanced/configuration.md` provider comparison, debugging flags, and referenced modules.