* feat: seed governance config and responses routing * Add env-configurable timeout for proxy providers * Integrate LiteLLM OTEL collector and update docs * Make .env.litellm optional for LiteLLM proxy * Add LiteLLM proxy integration with model-agnostic virtual keys Changes: - Bootstrap generates 3 virtual keys with individual budgets (CLI: $100, Task-Agent: $25, Cognee: $50) - Task-agent loads config at runtime via entrypoint script to wait for bootstrap completion - All keys are model-agnostic by default (no LITELLM_DEFAULT_MODELS restrictions) - Bootstrap handles database/env mismatch after docker prune by deleting stale aliases - CLI and Cognee configured to use LiteLLM proxy with virtual keys - Added comprehensive documentation in volumes/env/README.md Technical details: - task-agent entrypoint waits for keys in .env file before starting uvicorn - Bootstrap creates/updates TASK_AGENT_API_KEY, COGNEE_API_KEY, and OPENAI_API_KEY - Removed hardcoded API keys from docker-compose.yml - All services route through http://localhost:10999 proxy * Fix CLI not loading virtual keys from global .env Project .env files with empty OPENAI_API_KEY values were overriding the global virtual keys. Updated _load_env_file_if_exists to only override with non-empty values. * Fix agent executor not passing API key to LiteLLM The agent was initializing LiteLlm without api_key or api_base, causing authentication errors when using the LiteLLM proxy. Now reads from OPENAI_API_KEY/LLM_API_KEY and LLM_ENDPOINT environment variables and passes them to LiteLlm constructor. * Auto-populate project .env with virtual key from global config When running 'ff init', the command now checks for a global volumes/env/.env file and automatically uses the OPENAI_API_KEY virtual key if found. This ensures projects work with LiteLLM proxy out of the box without manual key configuration. * docs: Update README with LiteLLM configuration instructions Add note about LITELLM_GEMINI_API_KEY configuration and clarify that OPENAI_API_KEY default value should not be changed as it's used for the LLM proxy. * Refactor workflow parameters to use JSON Schema defaults Consolidates parameter defaults into JSON Schema format, removing the separate default_parameters field. Adds extract_defaults_from_json_schema() helper to extract defaults from the standard schema structure. Updates LiteLLM proxy config to use LITELLM_OPENAI_API_KEY environment variable. * Remove .env.example from task_agent * Fix MDX syntax error in llm-proxy.md * fix: apply default parameters from metadata.yaml automatically Fixed TemporalManager.run_workflow() to correctly apply default parameter values from workflow metadata.yaml files when parameters are not provided by the caller. Previous behavior: - When workflow_params was empty {}, the condition `if workflow_params and 'parameters' in metadata` would fail - Parameters would not be extracted from schema, resulting in workflows receiving only target_id with no other parameters New behavior: - Removed the `workflow_params and` requirement from the condition - Now explicitly checks for defaults in parameter spec - Applies defaults from metadata.yaml automatically when param not provided - Workflows receive all parameters with proper fallback: provided value > metadata default > None This makes metadata.yaml the single source of truth for parameter defaults, removing the need for workflows to implement defensive default handling. Affected workflows: - llm_secret_detection (was failing with KeyError) - All other workflows now benefit from automatic default application Co-authored-by: tduhamel42 <tduhamel@fuzzinglabs.com>
FuzzForge Backend
A stateless API server for security testing workflow orchestration using Temporal. This system dynamically discovers workflows, executes them in isolated worker environments, and returns findings in SARIF format.
Architecture Overview
Core Components
- Workflow Discovery System: Automatically discovers workflows at startup
- Module System: Reusable components (scanner, analyzer, reporter) with a common interface
- Temporal Integration: Handles workflow orchestration, execution, and monitoring with vertical workers
- File Upload & Storage: HTTP multipart upload to MinIO for target files
- SARIF Output: Standardized security findings format
Key Features
- Stateless: No persistent data, fully scalable
- Generic: No hardcoded workflows, automatic discovery
- Isolated: Each workflow runs in specialized vertical workers
- Extensible: Easy to add new workflows and modules
- Secure: File upload with MinIO storage, automatic cleanup via lifecycle policies
- Observable: Comprehensive logging and status tracking
Quick Start
Prerequisites
- Docker and Docker Compose
Installation
From the project root, start all services:
docker-compose -f docker-compose.temporal.yaml up -d
This will start:
- Temporal server (Web UI at http://localhost:8233, gRPC at :7233)
- MinIO (S3 storage at http://localhost:9000, Console at http://localhost:9001)
- PostgreSQL database (for Temporal state)
- Vertical workers (worker-rust, worker-android, worker-web, etc.)
- FuzzForge backend API (port 8000)
Note: MinIO console login: fuzzforge / fuzzforge123
API Endpoints
Workflows
GET /workflows- List all discovered workflowsGET /workflows/{name}/metadata- Get workflow metadata and parametersGET /workflows/{name}/parameters- Get workflow parameter schemaGET /workflows/metadata/schema- Get metadata.yaml schemaPOST /workflows/{name}/submit- Submit a workflow for execution (path-based, legacy)POST /workflows/{name}/upload-and-submit- Upload local files and submit workflow (recommended)
Runs
GET /runs/{run_id}/status- Get run statusGET /runs/{run_id}/findings- Get SARIF findings from completed runGET /runs/{workflow_name}/findings/{run_id}- Alternative findings endpoint with workflow name
Workflow Structure
Each workflow must have:
toolbox/workflows/{workflow_name}/
workflow.py # Temporal workflow definition
metadata.yaml # Mandatory metadata (parameters, version, vertical, etc.)
requirements.txt # Optional Python dependencies (installed in vertical worker)
Note: With Temporal architecture, workflows run in pre-built vertical workers (e.g., worker-rust, worker-android), not individual Docker containers. The workflow code is mounted as a volume and discovered at runtime.
Example metadata.yaml
name: security_assessment
version: "1.0.0"
description: "Comprehensive security analysis workflow"
author: "FuzzForge Team"
category: "comprehensive"
vertical: "rust" # Routes to worker-rust
tags:
- "security"
- "analysis"
- "comprehensive"
requirements:
tools:
- "file_scanner"
- "security_analyzer"
- "sarif_reporter"
resources:
memory: "512Mi"
cpu: "500m"
timeout: 1800
has_docker: true
parameters:
type: object
properties:
target_path:
type: string
default: "/workspace"
description: "Path to analyze"
scanner_config:
type: object
description: "Scanner configuration"
properties:
max_file_size:
type: integer
description: "Maximum file size to scan (bytes)"
output_schema:
type: object
properties:
sarif:
type: object
description: "SARIF-formatted security findings"
summary:
type: object
description: "Scan execution summary"
Metadata Field Descriptions
- name: Workflow identifier (must match directory name)
- version: Semantic version (x.y.z format)
- description: Human-readable description of the workflow
- author: Workflow author/maintainer
- category: Workflow category (comprehensive, specialized, fuzzing, focused)
- tags: Array of descriptive tags for categorization
- requirements.tools: Required security tools that the workflow uses
- requirements.resources: Resource requirements enforced at runtime:
memory: Memory limit (e.g., "512Mi", "1Gi")cpu: CPU limit (e.g., "500m" for 0.5 cores, "1" for 1 core)timeout: Maximum execution time in seconds
- parameters: JSON Schema object defining workflow parameters
- output_schema: Expected output format (typically SARIF)
Resource Requirements
Resource requirements defined in workflow metadata are automatically enforced. Users can override defaults when submitting workflows:
curl -X POST "http://localhost:8000/workflows/security_assessment/submit" \
-H "Content-Type: application/json" \
-d '{
"target_path": "/tmp/project",
"resource_limits": {
"memory_limit": "1Gi",
"cpu_limit": "1"
}
}'
Resource precedence: User limits > Workflow requirements > System defaults
File Upload and Target Access
Upload Endpoint
The backend provides an upload endpoint for submitting workflows with local files:
POST /workflows/{workflow_name}/upload-and-submit
Content-Type: multipart/form-data
Parameters:
file: File upload (supports .tar.gz for directories)
parameters: JSON string of workflow parameters (optional)
timeout: Execution timeout in seconds (optional)
Example using curl:
# Upload a directory (create tarball first)
tar -czf project.tar.gz /path/to/project
curl -X POST "http://localhost:8000/workflows/security_assessment/upload-and-submit" \
-F "file=@project.tar.gz" \
-F "parameters={\"check_secrets\":true}"
# Upload a single file
curl -X POST "http://localhost:8000/workflows/security_assessment/upload-and-submit" \
-F "file=@binary.elf"
Storage Flow
- CLI/API uploads file via HTTP multipart
- Backend receives file and streams to temporary location (max 10GB)
- Backend uploads to MinIO with generated
target_id - Workflow is submitted to Temporal with
target_id - Worker downloads target from MinIO to local cache
- Workflow processes target from cache
- MinIO lifecycle policy deletes files after 7 days
Advantages
- No host filesystem access required - workers can run anywhere
- Automatic cleanup - lifecycle policies prevent disk exhaustion
- Caching - repeated workflows reuse cached targets
- Multi-host ready - targets accessible from any worker
- Secure - isolated storage, no arbitrary host path access
Module Development
Modules implement the BaseModule interface:
from src.toolbox.modules.base import BaseModule, ModuleMetadata, ModuleResult
class MyModule(BaseModule):
def get_metadata(self) -> ModuleMetadata:
return ModuleMetadata(
name="my_module",
version="1.0.0",
description="Module description",
category="scanner",
...
)
async def execute(self, config: Dict, workspace: Path) -> ModuleResult:
# Module logic here
findings = [...]
return self.create_result(findings=findings)
def validate_config(self, config: Dict) -> bool:
# Validate configuration
return True
Submitting a Workflow
With File Upload (Recommended)
# Automatic tarball and upload
tar -czf project.tar.gz /home/user/project
curl -X POST "http://localhost:8000/workflows/security_assessment/upload-and-submit" \
-F "file=@project.tar.gz" \
-F "parameters={\"scanner_config\":{\"patterns\":[\"*.py\"]},\"analyzer_config\":{\"check_secrets\":true}}"
Legacy Path-Based Submission
# Only works if backend and target are on same machine
curl -X POST "http://localhost:8000/workflows/security_assessment/submit" \
-H "Content-Type: application/json" \
-d '{
"target_path": "/home/user/project",
"parameters": {
"scanner_config": {"patterns": ["*.py"]},
"analyzer_config": {"check_secrets": true}
}
}'
Getting Findings
curl "http://localhost:8000/runs/{run_id}/findings"
Returns SARIF-formatted findings:
{
"workflow": "security_assessment",
"run_id": "abc-123",
"sarif": {
"version": "2.1.0",
"runs": [{
"tool": {...},
"results": [...]
}]
}
}
Security Considerations
- File Upload Security: Files uploaded to MinIO with isolated storage
- Read-Only Default: Target files accessed as read-only unless explicitly set
- Worker Isolation: Each workflow runs in isolated vertical workers
- Resource Limits: Can set CPU/memory limits per worker
- Automatic Cleanup: MinIO lifecycle policies delete old files after 7 days
Development
Adding a New Workflow
- Create directory:
toolbox/workflows/my_workflow/ - Add
workflow.pywith a Temporal workflow (using@workflow.defn) - Add mandatory
metadata.yamlwithverticalfield - Restart the appropriate worker:
docker-compose -f docker-compose.temporal.yaml restart worker-rust - Worker will automatically discover and register the new workflow
Adding a New Module
- Create module in
toolbox/modules/{category}/ - Implement
BaseModuleinterface - Use in workflows via import
Adding a New Vertical Worker
- Create worker directory:
workers/{vertical}/ - Create
Dockerfilewith required tools - Add worker to
docker-compose.temporal.yaml - Worker will automatically discover workflows with matching
verticalin metadata