5.7 KiB
Interactions
map movement +---+ adding a node
|
+---+ adding a way +--+ click on an existing node
| |
| +--+ click on the map
| |
| +--+ click on existing, or esc to finish
|
+---+ adding an area ++ click on existing node
|
++ click on map
|
++ double click to finish, closes area if unclosed
Way drawing strategy:
- START: Click to start way
- END: Click on own node
- END: Click on self-segment
- END: Escape key
Pathological conditions
- Ways with one node
- Relations which contain themselves (circular references)
- Nodes with no tags and no way attached
- Ways which contain only nodes that are subsets of the nodes of other ways
- Paths with intersecting boundaries (invalid geometries)
Code Layout
This follows a similar layout to d3: each module of d3 has a file with its exact name, like
// format.js
iD.format = {};
And the parts of that module are in separate files that implement iD.format.XML
and so on.
The Graph
iD implements a persistent data structure over the OSM data model.
The data model of OSM is something like
root -> relations (-> relations) -> ways -> nodes
\ \> nodes
\- ways -> nodes
\- nodes
In English:
- Relations have (ways, nodes, relations)
- Ways have (nodes)
- Nodes have ()
Performance
Main performance concerns of iD:
Panning & zooming performance of the map
SVG redraws are costly, especially when they require all features to be reprojected.
Approaches:
- Using CSS transforms for intermediate map states, and then redrawing when map movement stops
- "In-between" projecting features to make reprojection cheaper
Memory overhead of objects
Many things will be stored by iD. With the graph structure in place, we'll be storing much more.
We also need to worry about memory leaks, which have been a big problem in Potlatch 2. Storing OSM data and versions leads to a lot of object-referencing in Javascript.
Connection, Graph, Map
The Map is a display and manipulation element. It should have minimal particulars of how exactly to store or retrieve data. It gets data from Connection and asks for it from Graph.
Graph stores all of the objects and all of the versions of those objects. Connection requests objects over HTTP, parses them, and provides them to Graph.
loaded
The .loaded member of nodes and ways is because of relations,
which refer to elements, so we want to have real references of those
elements, but we don't have the data yet. Thus when the Connection
encounters a new object but has a non-loaded representation of it,
the non-loaded version is replaced.
Prior Art
JOSM and Potlatch 2 appear to implement versioning in the same way, but having an undo stack:
// src/org/openstreetmap/josm/actions/MoveNodeAction.java
Main.main.undoRedo.add(new MoveCommand(n, coordinates));
// src/org/openstreetmap/josm/command/MoveCommand.java
/**
* List of all old states of the objects.
*/
private List<OldState> oldState = new LinkedList<OldState>();
@Override public boolean executeCommand() {
// ...
}
@Override public void undoCommand() {
// ...
}
Transforms Performance
There are two kinds of transforms: SVG and CSS. CSS transforms of SVG elements
are less efficient that SVG transforms of SVG elements. translate notation
has equivalent performance to matrix notation.
- svg swarm with svg transform matrix
- svg swarm with svg transform translate
- svg swarm with css translate
SVG transforms are a roughly 2x speedup relative to CSS - 16fps vs 32fps in Google Chrome Beta.
However, using CSS transforms with HTML elements has vastly different and
better performance than using them with SVG elements. For this reason, iD
transforms a map-container element rather than a g element on panning
movements.
SVG point rounding performance
Rounding points in SVG gives a ~20% speedup.
- http://bl.ocks.org/4081369 ~18fps
- http://bl.ocks.org/4081356 ~22fps (about 20% faster)
And this is not just the effect of less d data:
- http://bl.ocks.org/4089090 ~18fps
SVG Corner Cases
One-way streets need markers to indicate that they're one-way. Unfortunately SVG line markers are based strictly off of vertices, so won't handle this case properly.
- textPath demo http://bl.ocks.org/4078870
- line markers http://bl.ocks.org/4079441
One way to resolve this is by using textPath with a glyph, like a gt sign or triangle character if available. This has a few concerns:
- performance of textPath is known to suck in some cases. For simple cases, it is fine
- can we be absolutely sure about direction of text?
- glyphs need to be available. are webfonts svg-okay?
Or more importantly, we need to calculate the pixel length of a linestring, calculate the width of a glyph, and do the necessary math so that it fills enough of the line without overflowing.
See the textPath element and its quirks.
See: