Files
llmsecops-research/tests/integration/test_utils.py
2025-08-18 20:05:24 -06:00

102 lines
4.2 KiB
Python

import inspect
import os
from typing import List, Callable
from src.text_generation.common.model_id import ModelId
from src.text_generation.domain.semantic_similarity_result import SemanticSimilarityResult
from src.text_generation.domain.text_generation_completion_result import TextGenerationCompletionResult
from src.text_generation.services.logging.test_run_logging_service import TestRunLoggingService
from src.text_generation.services.nlp.abstract_semantic_similarity_service import AbstractSemanticSimilarityService
from src.text_generation.services.nlp.abstract_text_generation_completion_service import AbstractTextGenerationCompletionService
from src.text_generation.services.nlp.text_generation_completion_service import TextGenerationCompletionService
def get_prompt_batch(prompts: List[str], batch_size=10, env_var='PROMPT_BATCH'):
batch_size = int(os.getenv('BATCH_SIZE', '2'))
batch_num = int(os.getenv('PROMPT_BATCH', '1'))
if 'BATCH_OFFSET' in os.environ:
# Option 1: Fixed offset per workflow
offset = int(os.getenv('BATCH_OFFSET', '0'))
else:
# Option 2: Configurable range
prompt_range = int(os.getenv('PROMPT_RANGE', '1'))
offset = (prompt_range - 1) * 20
# Calculate start and end indices
start_idx = offset + (batch_num - 1) * batch_size
end_idx = min(start_idx + batch_size, len(prompts))
# Get the subset of prompts for this batch
prompt_subset: List[str] = prompts[start_idx:end_idx]
print(f"Running batch {batch_num} (range offset {offset}): prompts {start_idx+1}-{end_idx} ({len(prompt_subset)} prompts)")
return prompt_subset, (start_idx+1), end_idx
def run_prompt_analysis_test(
test_id: int,
model_id: ModelId,
text_generation_completion_service: AbstractTextGenerationCompletionService,
semantic_similarity_service: AbstractSemanticSimilarityService,
prompts: List,
start: int,
end: int,
comparison_texts: List,
service_configurator: Callable,
max_prompts: int = 100
) -> List[SemanticSimilarityResult]:
"""
Common utility for running prompt analysis tests.
Args:
test_id: Unique identifier for the test
text_generation_completion_service: Service for text generation
semantic_similarity_service: Service for semantic analysis
prompts: List of prompts to test
comparison_texts: Reference texts for similarity comparison
service_configurator: Function that configures the text generation service
max_prompts: Maximum number of prompts to process (default: 100)
Returns:
List of SemanticSimilarityResult objects
"""
semantic_similarity_service.use_comparison_texts(comparison_texts)
print(f'using {len(prompts)} prompts for testing...')
results = []
for i, prompt in enumerate(prompts[:max_prompts], 1):
# Configure the service using the provided configurator function
configured_service: TextGenerationCompletionService = service_configurator(text_generation_completion_service)
print(f'sending prompt {i} to LLM')
completion_result: TextGenerationCompletionResult = configured_service.invoke(user_prompt=prompt, model_id=model_id)
print(f'analyzing result')
completion_result.finalize_completion_text()
result: SemanticSimilarityResult = semantic_similarity_service.analyze(completion_result.final_completion_text)
print(f'{i}/{len(prompts)} Max Score: {result.max}')
print(f'{i}/{len(prompts)} Avg Score: {result.mean}')
TestRunLoggingService(
test_id=test_id,
model_id=model_id,
start=start,
end=end
).log_results(
id=inspect.currentframe().f_back.f_code.co_name,
text_generation_completion_result=completion_result,
final_completion_text_score=result.max,
is_rag_few_shot_enabled=text_generation_completion_service.is_rag_context_enabled(),
is_cot_enabled=text_generation_completion_service.is_chain_of_thought_enabled(),
is_reflexion_enabled=False,
original_llm_config=completion_result.original_result.llm_config
)
results.append(result)
return results