Files

126 lines
3.9 KiB
TypeScript

import { NextRequest, NextResponse } from 'next/server';
import { Pool } from 'pg';
const pool = new Pool({
connectionString: process.env.DATABASE_URL,
});
const TABLE_NAME = 'llm_proxy';
export async function GET(request: NextRequest) {
const { searchParams } = new URL(request.url);
// Validate and sanitize hours parameter
const hoursParam = Number.parseInt(searchParams.get('hours') || '24', 10);
const hours = !Number.isNaN(hoursParam) && hoursParam > 0 && hoursParam <= 720 ? hoursParam : 24;
// Validate and sanitize limit parameter
const limitParam = Number.parseInt(searchParams.get('limit') || '100', 10);
const limit = !Number.isNaN(limitParam) && limitParam > 0 && limitParam <= 1000 ? limitParam : 100;
try {
const client = await pool.connect();
try {
// Get summary statistics
const summaryQuery = `
SELECT
COUNT(*) as total_requests,
SUM(total_tokens) as total_tokens_used,
SUM(total_cost) as total_cost,
AVG(response_time) as avg_response_time,
COUNT(DISTINCT model) as unique_models,
COUNT(DISTINCT client_ip) as unique_clients
FROM ${TABLE_NAME}
WHERE timestamp >= NOW() - INTERVAL '1 hour' * $1
`;
const summaryResult = await client.query(summaryQuery, [hours]);
const summary = summaryResult.rows[0];
// Get recent requests
const recentQuery = `
SELECT
request_id,
timestamp,
model,
prompt_tokens,
completion_tokens,
total_tokens,
total_cost,
response_time,
response_status,
client_ip,
stream
FROM ${TABLE_NAME}
WHERE timestamp >= NOW() - INTERVAL '1 hour' * $1
ORDER BY timestamp DESC
LIMIT $2
`;
const recentResult = await client.query(recentQuery, [hours, limit]);
const recentRequests = recentResult.rows;
// Get model breakdown
const modelQuery = `
SELECT
model,
COUNT(*) as request_count,
SUM(total_tokens) as total_tokens,
SUM(total_cost) as total_cost,
AVG(response_time) as avg_response_time
FROM ${TABLE_NAME}
WHERE timestamp >= NOW() - INTERVAL '1 hour' * $1
GROUP BY model
ORDER BY request_count DESC
`;
const modelResult = await client.query(modelQuery, [hours]);
const modelBreakdown = modelResult.rows;
// Get hourly trends
const trendsQuery = `
SELECT
DATE_TRUNC('hour', timestamp) as hour,
COUNT(*) as requests,
SUM(total_tokens) as tokens,
SUM(total_cost) as cost,
AVG(response_time) as avg_response_time
FROM ${TABLE_NAME}
WHERE timestamp >= NOW() - INTERVAL '1 hour' * $1
GROUP BY hour
ORDER BY hour ASC
`;
const trendsResult = await client.query(trendsQuery, [hours]);
const hourlyTrends = trendsResult.rows;
return NextResponse.json({
success: true,
data: {
summary: {
totalRequests: Number.parseInt(summary.total_requests ?? '0'),
totalTokens: Number.parseInt(summary.total_tokens_used ?? '0'),
totalCost: Number.parseFloat(summary.total_cost ?? '0'),
avgResponseTime: Number.parseFloat(summary.avg_response_time ?? '0'),
uniqueModels: Number.parseInt(summary.unique_models ?? '0'),
uniqueClients: Number.parseInt(summary.unique_clients ?? '0'),
},
recentRequests,
modelBreakdown,
hourlyTrends,
},
timeRange: `${hours} hours`,
});
} finally {
client.release();
}
} catch (error) {
console.error('Database error:', error);
return NextResponse.json(
{
success: false,
error: 'Failed to fetch metrics',
details: error instanceof Error ? error.message : 'Unknown error'
},
{ status: 500 }
);
}
}