Files
Ronni Skansing 07c8adaf76 update vendor deps
Signed-off-by: Ronni Skansing <rskansing@gmail.com>
2025-11-06 23:31:08 +01:00

822 lines
27 KiB
Go

package g
import (
"fmt"
"math/big"
"slices"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"unsafe"
"github.com/enetx/g/cmp"
"github.com/enetx/g/f"
"golang.org/x/text/unicode/norm"
)
// NewString creates a new String from the provided string.
func NewString[T ~string | rune | byte | ~[]rune | ~[]byte](str T) String { return String(str) }
// Clone returns a copy of the String.
// It ensures that the returned String does not share underlying memory with the original String,
// making it safe to modify or store independently.
func (s String) Clone() String { return String(strings.Clone(s.Std())) }
// Transform applies a transformation function to the String and returns the result.
func (s String) Transform(fn func(String) String) String { return fn(s) }
// Builder returns a new Builder initialized with the content of the String.
func (s String) Builder() *Builder {
b := new(Builder)
b.WriteString(s)
return b
}
// Min returns the minimum of Strings.
func (s String) Min(b ...String) String { return cmp.Min(append(b, s)...) }
// Max returns the maximum of Strings.
func (s String) Max(b ...String) String { return cmp.Max(append(b, s)...) }
// Random generates a random String of the specified length, selecting characters from predefined sets.
// If additional character sets are provided, only those will be used; the default set (ASCII_LETTERS and DIGITS)
// is excluded unless explicitly provided.
//
// Parameters:
// - count (Int): Length of the random String to generate.
// - letters (...String): Additional character sets to consider for generating the random String (optional).
//
// Returns:
// - String: Randomly generated String with the specified length.
//
// Example usage:
//
// randomString := g.String.Random(10)
// randomString contains a random String with 10 characters.
func (String) Random(length Int, letters ...String) String {
var chars Slice[rune]
if len(letters) != 0 {
chars = letters[0].Runes()
} else {
chars = (ASCII_LETTERS + DIGITS).Runes()
}
var b Builder
b.Grow(length)
for range length {
b.WriteRune(chars.Random())
}
return b.String()
}
// IsASCII checks if all characters in the String are ASCII bytes.
func (s String) IsASCII() bool {
for _, r := range s {
if r > unicode.MaxASCII {
return false
}
}
return true
}
// IsDigit checks if all characters in the String are digits.
func (s String) IsDigit() bool {
if s.Empty() {
return false
}
for _, c := range s {
if !unicode.IsDigit(c) {
return false
}
}
return true
}
// ToInt tries to parse the String as an int and returns an Int.
func (s String) ToInt() Result[Int] {
hint, err := strconv.ParseInt(s.Std(), 0, 64)
if err != nil {
return Err[Int](err)
}
return Ok(Int(hint))
}
// ToBigInt attempts to convert the String receiver into an Option containing a *big.Int.
// This function assumes the string represents a numerical value, which can be in decimal,
// hexadecimal (prefixed with "0x"), or octal (prefixed with "0") format. The function
// leverages the SetString method of the math/big package, automatically detecting the
// numeric base when set to 0.
//
// If the string is correctly formatted and represents a valid number, ToBigInt returns
// a Some containing the *big.Int parsed from the string. If the string is empty, contains
// invalid characters, or does not conform to a recognizable numeric format, ToBigInt
// returns a None, indicating that the conversion was unsuccessful.
//
// Returns:
// - An Option[*big.Int] encapsulating the conversion result. It returns Some[*big.Int]
// with the parsed value if successful, otherwise None[*big.Int] if the parsing fails.
func (s String) ToBigInt() Option[*big.Int] {
if bigInt, ok := new(big.Int).SetString(s.Std(), 0); ok {
return Some(bigInt)
}
return None[*big.Int]()
}
// ToFloat tries to parse the String as a float64 and returns an Float.
func (s String) ToFloat() Result[Float] {
float, err := strconv.ParseFloat(s.Std(), 64)
if err != nil {
return Err[Float](err)
}
return Ok(Float(float))
}
// Title converts the String to title case.
func (s String) Title() String { return String(title.String(s.Std())) }
// Lower returns the String in lowercase.
func (s String) Lower() String { return s.Bytes().Lower().String() }
// Upper returns the String in uppercase.
func (s String) Upper() String { return s.Bytes().Upper().String() }
// Trim removes leading and trailing white space from the String.
func (s String) Trim() String { return String(strings.TrimSpace(s.Std())) }
// TrimStart removes leading white space from the String.
func (s String) TrimStart() String { return String(strings.TrimLeftFunc(s.Std(), unicode.IsSpace)) }
// TrimEnd removes trailing white space from the String.
func (s String) TrimEnd() String { return String(strings.TrimRightFunc(s.Std(), unicode.IsSpace)) }
// TrimSet removes the specified set of characters from both the beginning and end of the String.
func (s String) TrimSet(cutset String) String { return String(strings.Trim(s.Std(), cutset.Std())) }
// TrimStartSet removes the specified set of characters from the beginning of the String.
func (s String) TrimStartSet(cutset String) String {
return String(strings.TrimLeft(s.Std(), cutset.Std()))
}
// TrimEndSet removes the specified set of characters from the end of the String.
func (s String) TrimEndSet(cutset String) String {
return String(strings.TrimRight(s.Std(), cutset.Std()))
}
// StripPrefix trims the specified prefix from the String.
func (s String) StripPrefix(prefix String) String {
return String(strings.TrimPrefix(s.Std(), prefix.Std()))
}
// StripSuffix trims the specified suffix from the String.
func (s String) StripSuffix(suffix String) String {
return String(strings.TrimSuffix(s.Std(), suffix.Std()))
}
// Replace replaces the 'oldS' String with the 'newS' String for the specified number of
// occurrences.
func (s String) Replace(oldS, newS String, n Int) String {
return String(strings.Replace(s.Std(), oldS.Std(), newS.Std(), n.Std()))
}
// ReplaceAll replaces all occurrences of the 'oldS' String with the 'newS' String.
func (s String) ReplaceAll(oldS, newS String) String {
return String(strings.ReplaceAll(s.Std(), oldS.Std(), newS.Std()))
}
// ReplaceMulti creates a custom replacer to perform multiple string replacements.
//
// Parameters:
//
// - oldnew ...String: Pairs of strings to be replaced. Specify as many pairs as needed.
//
// Returns:
//
// - String: A new string with replacements applied using the custom replacer.
//
// Example usage:
//
// original := g.String("Hello, world! This is a test.")
// replaced := original.ReplaceMulti(
// "Hello", "Greetings",
// "world", "universe",
// "test", "example",
// )
// // replaced contains "Greetings, universe! This is an example."
func (s String) ReplaceMulti(oldnew ...String) String {
pairs := make([]string, len(oldnew))
for i, str := range oldnew {
pairs[i] = str.Std()
}
return String(strings.NewReplacer(pairs...).Replace(s.Std()))
}
// Remove removes all occurrences of specified substrings from the String.
//
// Parameters:
//
// - matches ...String: Substrings to be removed from the string. Specify as many substrings as needed.
//
// Returns:
//
// - String: A new string with all specified substrings removed.
//
// Example usage:
//
// original := g.String("Hello, world! This is a test.")
// modified := original.Remove(
// "Hello",
// "test",
// )
// // modified contains ", world! This is a ."
func (s String) Remove(matches ...String) String {
if len(matches) == 0 {
return s
}
pairs := make([]string, len(matches)*2)
for i, match := range matches {
pairs[i*2] = match.Std()
pairs[i*2+1] = ""
}
return String(strings.NewReplacer(pairs...).Replace(s.Std()))
}
// ReplaceNth returns a new String instance with the nth occurrence of oldS
// replaced with newS. If there aren't enough occurrences of oldS, the
// original String is returned. If n is less than -1, the original String
// is also returned. If n is -1, the last occurrence of oldS is replaced with newS.
//
// Returns:
//
// - A new String instance with the nth occurrence of oldS replaced with newS.
//
// Example usage:
//
// s := g.String("The quick brown dog jumped over the lazy dog.")
// result := s.ReplaceNth("dog", "fox", 2)
// fmt.Println(result)
//
// Output: "The quick brown dog jumped over the lazy fox.".
func (s String) ReplaceNth(oldS, newS String, n Int) String {
if n < -1 || len(oldS) == 0 {
return s
}
count, i := Int(0), Int(0)
for {
pos := s[i:].Index(oldS)
if pos == -1 {
break
}
pos += i
count++
if count == n || (n == -1 && s[pos+oldS.Len():].Index(oldS) == -1) {
return s[:pos] + newS + s[pos+oldS.Len():]
}
i = pos + oldS.Len()
}
return s
}
// Contains checks if the String contains the specified substring.
func (s String) Contains(substr String) bool { return f.Contains(substr)(s) }
// ContainsAny checks if the String contains any of the specified substrings.
func (s String) ContainsAny(substrs ...String) bool {
return slices.ContainsFunc(substrs, s.Contains)
}
// ContainsAll checks if the given String contains all the specified substrings.
func (s String) ContainsAll(substrs ...String) bool {
for _, substr := range substrs {
if !s.Contains(substr) {
return false
}
}
return true
}
// ContainsAnyChars checks if the String contains any characters from the specified String.
func (s String) ContainsAnyChars(chars String) bool { return f.ContainsAnyChars(chars)(s) }
// StartsWith checks if the String starts with the specified prefix.
// It uses a higher-order function to perform the check.
func (s String) StartsWith(prefix String) bool { return f.StartsWith(prefix)(s) }
// StartsWithAny checks if the String starts with any of the provided prefixes.
// The method accepts a variable number of arguments, allowing for checking against multiple
// prefixes at once. It iterates over the provided prefixes and uses the HasPrefix function from
// the strings package to check if the String starts with each prefix.
// The function returns true if the String starts with any of the prefixes, and false otherwise.
//
// Example usage:
//
// s := g.String("http://example.com")
// if s.StartsWithAny("http://", "https://") {
// // do something
// }
func (s String) StartsWithAny(prefixes ...String) bool {
return slices.ContainsFunc(prefixes, s.StartsWith)
}
// EndsWith checks if the String ends with the specified suffix.
// It uses a higher-order function to perform the check.
func (s String) EndsWith(suffix String) bool { return f.EndsWith(suffix)(s) }
// EndsWithAny checks if the String ends with any of the provided suffixes.
// The method accepts a variable number of arguments, allowing for checking against multiple
// suffixes at once. It iterates over the provided suffixes and uses the HasSuffix function from
// the strings package to check if the String ends with each suffix.
// The function returns true if the String ends with any of the suffixes, and false otherwise.
//
// Example usage:
//
// s := g.String("example.com")
// if s.EndsWithAny(".com", ".net") {
// // do something
// }
func (s String) EndsWithAny(suffixes ...String) bool {
return slices.ContainsFunc(suffixes, s.EndsWith)
}
// Lines splits the String by lines and returns the iterator.
func (s String) Lines() SeqSlice[String] {
return transformSeq(strings.Lines(s.Std()), NewString).Map(String.TrimEnd)
}
// Fields splits the String into a slice of substrings, removing any whitespace, and returns the iterator.
func (s String) Fields() SeqSlice[String] {
return transformSeq(strings.FieldsSeq(s.Std()), NewString)
}
// FieldsBy splits the String into a slice of substrings using a custom function to determine the field boundaries,
// and returns the iterator.
func (s String) FieldsBy(fn func(r rune) bool) SeqSlice[String] {
return transformSeq(strings.FieldsFuncSeq(s.Std(), fn), NewString)
}
// Split splits the String by the specified separator and returns the iterator.
func (s String) Split(sep ...String) SeqSlice[String] {
var separator String
if len(sep) != 0 {
separator = sep[0]
}
return transformSeq(strings.SplitSeq(s.Std(), separator.Std()), NewString)
}
// SplitAfter splits the String after each instance of the specified separator and returns the iterator.
func (s String) SplitAfter(sep String) SeqSlice[String] {
return transformSeq(strings.SplitAfterSeq(s.Std(), sep.Std()), NewString)
}
// SplitN splits the String into substrings using the provided separator and returns an Slice[String] of the results.
// The n parameter controls the number of substrings to return:
// - If n is negative, there is no limit on the number of substrings returned.
// - If n is zero, an empty Slice[String] is returned.
// - If n is positive, at most n substrings are returned.
func (s String) SplitN(sep String, n Int) Slice[String] {
return TransformSlice(strings.SplitN(s.Std(), sep.Std(), n.Std()), NewString)
}
// Chunks splits the String into chunks of the specified size.
//
// This function iterates through the String, creating new String chunks of the specified size.
// If size is less than or equal to 0 or the String is empty,
// it returns an empty Slice[String].
// If size is greater than or equal to the length of the String,
// it returns an Slice[String] containing the original String.
//
// Parameters:
//
// - size (Int): The size of the chunks to split the String into.
//
// Returns:
//
// - Slice[String]: A slice of String chunks of the specified size.
//
// Example usage:
//
// text := g.String("Hello, World!")
// chunks := text.Chunks(4)
//
// chunks contains {"Hell", "o, W", "orld", "!"}.
func (s String) Chunks(size Int) SeqSlice[String] {
if size.Lte(0) || s.Empty() {
return func(func(String) bool) {}
}
runes := s.Runes()
if size.Gte(Int(len(runes))) {
return func(yield func(String) bool) { yield(s) }
}
n := size.Std()
return func(yield func(String) bool) {
for i := 0; i < len(runes); i += n {
end := min(i+n, len(runes))
if !yield(String(runes[i:end])) {
return
}
}
}
}
// Cut returns two String values. The first String contains the remainder of the
// original String after the cut. The second String contains the text between the
// first occurrences of the 'start' and 'end' strings, with tags removed if specified.
//
// The function searches for the 'start' and 'end' strings within the String.
// If both are found, it returns the first String containing the remainder of the
// original String after the cut, followed by the second String containing the text
// between the first occurrences of 'start' and 'end' with tags removed if specified.
//
// If either 'start' or 'end' is empty or not found in the String, it returns the
// original String as the second String, and an empty String as the first.
//
// Parameters:
//
// - start (String): The String marking the beginning of the text to be cut.
//
// - end (String): The String marking the end of the text to be cut.
//
// - rmtags (bool, optional): An optional boolean parameter indicating whether
// to remove 'start' and 'end' tags from the cut text. Defaults to false.
//
// Returns:
//
// - String: The first String containing the remainder of the original String
// after the cut, with tags removed if specified,
// or an empty String if 'start' or 'end' is empty or not found.
//
// - String: The second String containing the text between the first occurrences of
// 'start' and 'end', or the original String if 'start' or 'end' is empty or not found.
//
// Example usage:
//
// s := g.String("Hello, [world]! How are you?")
// remainder, cut := s.Cut("[", "]")
// // remainder: "Hello, ! How are you?"
// // cut: "world"
func (s String) Cut(start, end String, rmtags ...bool) (String, String) {
if start.Empty() || end.Empty() {
return s, ""
}
startIndex := s.Index(start)
if startIndex == -1 {
return s, ""
}
startEnd := startIndex + start.Len()
endIndex := s[startEnd:].Index(end)
if endIndex == -1 {
return s, ""
}
cut := s[startEnd : startEnd+endIndex]
if len(rmtags) != 0 && !rmtags[0] {
startEnd += end.Len()
return s[:startIndex] + s[startIndex:startEnd+endIndex] + s[startEnd+endIndex:], cut
}
return s[:startIndex] + s[startEnd+endIndex+end.Len():], cut
}
// Similarity calculates the similarity between two Strings using the
// Levenshtein distance algorithm and returns the similarity percentage as an Float.
//
// The function compares two Strings using the Levenshtein distance,
// which measures the difference between two sequences by counting the number
// of single-character edits required to change one sequence into the other.
// The similarity is then calculated by normalizing the distance by the maximum
// length of the two input Strings.
//
// Parameters:
//
// - str (String): The String to compare with s.
//
// Returns:
//
// - Float: The similarity percentage between the two Strings as a value between 0 and 100.
//
// Example usage:
//
// s1 := g.String("kitten")
// s2 := g.String("sitting")
// similarity := s1.Similarity(s2) // 57.14285714285714
func (s String) Similarity(str String) Float {
if s.Eq(str) {
return 100
}
if s.Empty() || str.Empty() {
return 0
}
s1 := s.Runes()
s2 := str.Runes()
lenS1 := s.LenRunes()
lenS2 := str.LenRunes()
if lenS1 > lenS2 {
s1, s2, lenS1, lenS2 = s2, s1, lenS2, lenS1
}
distance := NewSlice[Int](lenS1 + 1)
for i, r2 := range s2 {
prev := Int(i) + 1
for j, r1 := range s1 {
current := distance[j]
if r2 != r1 {
current = distance[j].Add(1).Min(prev + 1).Min(distance[j+1] + 1)
}
distance[j], prev = prev, current
}
distance[lenS1] = prev
}
return Float(1).Sub(distance[lenS1].Float() / lenS1.Max(lenS2).Float()).Mul(100)
}
// Cmp compares two Strings and returns an cmp.Ordering indicating their relative order.
// The result will be cmp.Equal if s==str, cmp.Less if s < str, and cmp.Greater if s > str.
func (s String) Cmp(str String) cmp.Ordering { return cmp.Cmp(s, str) }
// Append appends the specified String to the current String.
func (s String) Append(str String) String { return s + str }
// Prepend prepends the specified String to the current String.
func (s String) Prepend(str String) String { return str + s }
// ContainsRune checks if the String contains the specified rune.
func (s String) ContainsRune(r rune) bool { return strings.ContainsRune(s.Std(), r) }
// Count returns the number of non-overlapping instances of the substring in the String.
func (s String) Count(substr String) Int { return Int(strings.Count(s.Std(), substr.Std())) }
// Empty checks if the String is empty.
func (s String) Empty() bool { return len(s) == 0 }
// Eq checks if two Strings are equal.
func (s String) Eq(str String) bool { return s == str }
// EqFold compares two String strings case-insensitively.
func (s String) EqFold(str String) bool { return strings.EqualFold(s.Std(), str.Std()) }
// Gt checks if the String is greater than the specified String.
func (s String) Gt(str String) bool { return s > str }
// Gte checks if the String is greater than or equal to the specified String.
func (s String) Gte(str String) bool { return s >= str }
// Bytes returns the String as an Bytes.
func (s String) Bytes() Bytes { return Bytes(s) }
// BytesUnsafe converts the String into Bytes without copying memory.
// Warning: the resulting Bytes shares the same underlying memory as the original String.
// If the original String is modified through unsafe operations (rare), or if it is garbage collected,
// the Bytes may become invalid or cause undefined behavior.
func (s String) BytesUnsafe() Bytes { return unsafe.Slice(unsafe.StringData(s.Std()), len(s)) }
// Index returns the index of the first instance of the specified substring in the String, or -1
// if substr is not present in s.
func (s String) Index(substr String) Int { return Int(strings.Index(s.Std(), substr.Std())) }
// LastIndex returns the index of the last instance of the specified substring in the String, or -1
// if substr is not present in s.
func (s String) LastIndex(substr String) Int { return Int(strings.LastIndex(s.Std(), substr.Std())) }
// IndexRune returns the index of the first instance of the specified rune in the String.
func (s String) IndexRune(r rune) Int { return Int(strings.IndexRune(s.Std(), r)) }
// Len returns the length of the String.
func (s String) Len() Int { return Int(len(s)) }
// LenRunes returns the number of runes in the String.
func (s String) LenRunes() Int { return Int(utf8.RuneCountInString(s.Std())) }
// Lt checks if the String is less than the specified String.
func (s String) Lt(str String) bool { return s < str }
// Lte checks if the String is less than or equal to the specified String.
func (s String) Lte(str String) bool { return s <= str }
// Map applies the provided function to all runes in the String and returns the resulting String.
func (s String) Map(fn func(rune) rune) String { return String(strings.Map(fn, s.Std())) }
// NormalizeNFC returns a new String with its Unicode characters normalized using the NFC form.
func (s String) NormalizeNFC() String { return String(norm.NFC.String(s.Std())) }
// Ne checks if two Strings are not equal.
func (s String) Ne(str String) bool { return !s.Eq(str) }
// NotEmpty checks if the String is not empty.
func (s String) NotEmpty() bool { return s.Len() != 0 }
// Reader returns a *strings.Reader initialized with the content of String.
func (s String) Reader() *strings.Reader { return strings.NewReader(s.Std()) }
// Repeat returns a new String consisting of the specified count of the original String.
func (s String) Repeat(count Int) String { return String(strings.Repeat(s.Std(), count.Std())) }
// Reverse reverses the String.
func (s String) Reverse() String { return s.Bytes().Reverse().String() }
// Runes returns the String as a slice of runes.
func (s String) Runes() Slice[rune] { return []rune(s) }
// Chars splits the String into individual characters and returns the iterator.
func (s String) Chars() SeqSlice[String] { return s.Split() }
// SubString extracts a substring from the String starting at the 'start' index and ending before the 'end' index.
// The function also supports an optional 'step' parameter to define the increment between indices in the substring.
// If 'start' or 'end' index is negative, they represent positions relative to the end of the String:
// - A negative 'start' index indicates the position from the end of the String, moving backward.
// - A negative 'end' index indicates the position from the end of the String.
// The function ensures that indices are adjusted to fall within the valid range of the String's length.
// If indices are out of bounds or if 'start' exceeds 'end', the function returns the original String unmodified.
func (s String) SubString(start, end Int, step ...Int) String {
return String(s.Runes().SubSlice(start, end, step...))
}
// Std returns the String as a string.
func (s String) Std() string { return string(s) }
// Format applies a specified format to the String object.
func (s String) Format(template String) String { return Format(template, s) }
// Truncate shortens the String to the specified maximum length. If the String exceeds the
// specified length, it is truncated, and an ellipsis ("...") is appended to indicate the truncation.
//
// If the length of the String is less than or equal to the specified maximum length, the
// original String is returned unchanged.
//
// The method respects Unicode characters and truncates based on the number of runes,
// not bytes.
//
// Parameters:
// - max: The maximum number of runes allowed in the resulting String.
//
// Returns:
// - A new String truncated to the specified maximum length with "..." appended
// if truncation occurs. Otherwise, returns the original String.
//
// Example usage:
//
// s := g.String("Hello, World!")
// result := s.Truncate(5)
// // result: "Hello..."
//
// s2 := g.String("Short")
// result2 := s2.Truncate(10)
// // result2: "Short"
//
// s3 := g.String("😊😊😊😊😊")
// result3 := s3.Truncate(3)
// // result3: "😊😊😊..."
func (s String) Truncate(max Int) String {
if max.IsNegative() || s.LenRunes().Lte(max) {
return s
}
return String(s.Runes().SubSlice(0, max)).Append("...")
}
// LeftJustify justifies the String to the left by adding padding to the right, up to the
// specified length. If the length of the String is already greater than or equal to the specified
// length, or the pad is empty, the original String is returned.
//
// The padding String is repeated as necessary to fill the remaining length.
// The padding is added to the right of the String.
//
// Parameters:
// - length: The desired length of the resulting justified String.
// - pad: The String used as padding.
//
// Example usage:
//
// s := g.String("Hello")
// result := s.LeftJustify(10, "...")
// // result: "Hello....."
func (s String) LeftJustify(length Int, pad String) String {
if s.LenRunes() >= length || pad.Eq("") {
return s
}
var b Builder
_, _ = b.WriteString(s)
writePadding(&b, pad, pad.LenRunes(), length-s.LenRunes())
return b.String()
}
// RightJustify justifies the String to the right by adding padding to the left, up to the
// specified length. If the length of the String is already greater than or equal to the specified
// length, or the pad is empty, the original String is returned.
//
// The padding String is repeated as necessary to fill the remaining length.
// The padding is added to the left of the String.
//
// Parameters:
// - length: The desired length of the resulting justified String.
// - pad: The String used as padding.
//
// Example usage:
//
// s := g.String("Hello")
// result := s.RightJustify(10, "...")
// // result: ".....Hello"
func (s String) RightJustify(length Int, pad String) String {
if s.LenRunes() >= length || pad.Empty() {
return s
}
var b Builder
writePadding(&b, pad, pad.LenRunes(), length-s.LenRunes())
_, _ = b.WriteString(s)
return b.String()
}
// Center justifies the String by adding padding on both sides, up to the specified length.
// If the length of the String is already greater than or equal to the specified length, or the
// pad is empty, the original String is returned.
//
// The padding String is repeated as necessary to evenly distribute the remaining length on both
// sides.
// The padding is added to the left and right of the String.
//
// Parameters:
// - length: The desired length of the resulting justified String.
// - pad: The String used as padding.
//
// Example usage:
//
// s := g.String("Hello")
// result := s.Center(10, "...")
// // result: "..Hello..."
func (s String) Center(length Int, pad String) String {
if s.LenRunes() >= length || pad.Empty() {
return s
}
var b Builder
remains := length - s.LenRunes()
writePadding(&b, pad, pad.LenRunes(), remains/2)
_, _ = b.WriteString(s)
writePadding(&b, pad, pad.LenRunes(), (remains+1)/2)
return b.String()
}
// writePadding writes the padding String to the output Builder to fill the remaining length.
// It repeats the padding String as necessary and appends any remaining runes from the padding
// String.
func writePadding(b *Builder, pad String, padlen, remains Int) {
if repeats := remains / padlen; repeats > 0 {
_, _ = b.WriteString(pad.Repeat(repeats))
}
padrunes := pad.Runes()
for i := range remains % padlen {
_, _ = b.WriteRune(padrunes[i])
}
}
// Print writes the content of the String to the standard output (console)
// and returns the String unchanged.
func (s String) Print() String { fmt.Print(s); return s }
// Println writes the content of the String to the standard output (console) with a newline
// and returns the String unchanged.
func (s String) Println() String { fmt.Println(s); return s }