mirror of
https://github.com/AndrewZhou924/Awesome-model-inversion-attack.git
synced 2026-01-25 22:11:26 +00:00
Update README.md
This commit is contained in:
26
README.md
26
README.md
@@ -1,6 +1,26 @@
|
||||
# Awesome-model-inversion-attack
|
||||
|
||||
### Defending MIA on graphs
|
||||
|
||||
2022 - DIFFERENTIALLY PRIVATE GRAPH CLASSIFICATION WITH GNNS
|
||||
[paper](https://arxiv.org/pdf/2202.02575.pdf)
|
||||
|
||||
### Graph Learning
|
||||
|
||||
WWW 2022 - Learning Privacy-Preserving Graph Convolutional Network with Partially Observed Sensitive Attributes.
|
||||
[[paper]](https://dl.acm.org/doi/pdf/10.1145/3485447.3511975?casa_token=Xsle4t9cLdcAAAAA:Gmij-qWaTJ2esGVa-yzKNHqVOMzYyaIgdNcgGmEzHrVyMdwwf9idn3qBjkhCcQeRTvbAkaT6OxiwXsk)
|
||||
|
||||
Arxiv 2022 - DIFFERENTIALLY PRIVATE GRAPH CLASSIFICATION WITH GNNS.
|
||||
[[paper]](https://arxiv.org/pdf/2202.02575.pdf)
|
||||
|
||||
Arxiv 2022 - GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation.
|
||||
[[paper]](https://arxiv.org/pdf/2203.00949.pdf)
|
||||
|
||||
Arxiv 2022 - SOK: DIFFERENTIAL PRIVACY ON GRAPH-STRUCTURED DATA.
|
||||
[[paper]](https://arxiv.org/pdf/2203.09205.pdf)
|
||||
|
||||
Arxiv 2022 - Degree-Preserving Randomized Response for Graph Neural Networks under Local Differential Privacy.
|
||||
[[paper]](https://arxiv.org/pdf/2202.10209.pdf)
|
||||
|
||||
Arxiv 2022 - Private Graph Extraction via Feature Explanations.
|
||||
[[paper]](https://arxiv.org/pdf/2206.14724.pdf)
|
||||
|
||||
|
||||
<!-- [[paper]]() -->
|
||||
|
||||
Reference in New Issue
Block a user