mirror of
https://github.com/CyberSecurityUP/NeuroSploit.git
synced 2026-02-12 14:02:45 +00:00
121 lines
4.7 KiB
Python
121 lines
4.7 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Web Pentest Agent - Specialized agent for web application penetration testing.
|
|
"""
|
|
|
|
import json
|
|
import logging
|
|
from typing import Dict, List
|
|
from core.llm_manager import LLMManager
|
|
from tools.web_pentest import WebRecon # Import the moved WebRecon tool
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class WebPentestAgent:
|
|
"""Agent responsible for comprehensive web application penetration testing."""
|
|
|
|
def __init__(self, config: Dict):
|
|
"""Initializes the WebPentestAgent."""
|
|
self.config = config
|
|
self.llm = LLMManager(config)
|
|
self.web_recon = WebRecon(config)
|
|
# Placeholder for web exploitation tools if they become separate classes
|
|
# self.web_exploiter = WebExploiter(config)
|
|
logger.info("WebPentestAgent initialized")
|
|
|
|
def execute(self, target: str, context: Dict) -> Dict:
|
|
"""Executes the web application penetration testing phase."""
|
|
logger.info(f"Starting web pentest on {target}")
|
|
|
|
results = {
|
|
"target": target,
|
|
"status": "running",
|
|
"web_recon_results": {},
|
|
"vulnerability_analysis": [],
|
|
"exploitation_attempts": [],
|
|
"ai_analysis": {}
|
|
}
|
|
|
|
try:
|
|
# Phase 1: Web Reconnaissance
|
|
logger.info("Phase 1: Web Reconnaissance (WebPentestAgent)")
|
|
web_recon_output = self.web_recon.analyze(target)
|
|
results["web_recon_results"] = web_recon_output
|
|
|
|
# Phase 2: Vulnerability Analysis (AI-powered)
|
|
logger.info("Phase 2: AI-powered Vulnerability Analysis")
|
|
# This part will be improved later with more detailed vulnerability detection in WebRecon
|
|
# For now, it will look for findings reported by WebRecon
|
|
|
|
potential_vulnerabilities = self._identify_potential_web_vulnerabilities(web_recon_output)
|
|
|
|
if potential_vulnerabilities:
|
|
results["vulnerability_analysis"] = potential_vulnerabilities
|
|
ai_vulnerability_analysis = self._ai_analyze_web_vulnerabilities(potential_vulnerabilities, target)
|
|
results["ai_analysis"]["vulnerability_insights"] = ai_vulnerability_analysis
|
|
else:
|
|
logger.info("No immediate web vulnerabilities identified by WebRecon.")
|
|
|
|
# Phase 3: Web Exploitation (Placeholder for now)
|
|
# This will integrate with exploitation tools later.
|
|
|
|
results["status"] = "completed"
|
|
logger.info("Web pentest phase completed")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error during web pentest: {e}")
|
|
results["status"] = "error"
|
|
results["error"] = str(e)
|
|
|
|
return results
|
|
|
|
def _identify_potential_web_vulnerabilities(self, web_recon_output: Dict) -> List[Dict]:
|
|
"""
|
|
Identifies potential web vulnerabilities based on WebRecon output.
|
|
This is a placeholder and will be enhanced as WebRecon improves.
|
|
"""
|
|
vulnerabilities = []
|
|
if "vulnerabilities" in web_recon_output:
|
|
vulnerabilities.extend(web_recon_output["vulnerabilities"])
|
|
return vulnerabilities
|
|
|
|
def _ai_analyze_web_vulnerabilities(self, vulnerabilities: List[Dict], target: str) -> Dict:
|
|
"""Uses AI to analyze identified web vulnerabilities."""
|
|
prompt = self.llm.get_prompt(
|
|
"web_recon",
|
|
"ai_analysis_user",
|
|
default=f"""
|
|
Analyze the following potential web vulnerabilities identified on {target} and provide insights:
|
|
|
|
Vulnerabilities: {json.dumps(vulnerabilities, indent=2)}
|
|
|
|
Provide:
|
|
1. Prioritized list of vulnerabilities
|
|
2. Recommended exploitation steps for each (if applicable)
|
|
3. Potential impact
|
|
4. Remediation suggestions
|
|
|
|
Response in JSON format with actionable recommendations.
|
|
"""
|
|
)
|
|
|
|
system_prompt = self.llm.get_prompt(
|
|
"web_recon",
|
|
"ai_analysis_system",
|
|
default="""You are an expert web penetration tester and security analyst.
|
|
Provide precise analysis of web vulnerabilities and practical advice for exploitation and remediation."""
|
|
)
|
|
|
|
try:
|
|
# Format the user prompt with recon_data
|
|
formatted_prompt = prompt.format(
|
|
target=target,
|
|
vulnerabilities_json=json.dumps(vulnerabilities, indent=2)
|
|
)
|
|
response = self.llm.generate(formatted_prompt, system_prompt)
|
|
return json.loads(response)
|
|
except Exception as e:
|
|
logger.error(f"AI web vulnerability analysis error: {e}")
|
|
return {"error": str(e), "raw_response": response if 'response' in locals() else None}
|
|
|