Merge pull request #18 from JFChi/change_zhao_2019

Update paper name
This commit is contained in:
MariaRigaki
2021-12-21 09:42:22 +01:00
committed by GitHub

2
README.md Normal file → Executable file
View File

@@ -118,7 +118,7 @@ Reconstruction attacks cover also attacks known as *model inversion* and *attrib
- [**The secret revealer: generative model-inversion attacks against deep neural networks**](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_The_Secret_Revealer_Generative_Model-Inversion_Attacks_Against_Deep_Neural_Networks_CVPR_2020_paper.pdf)) (Zhang et al., 2020)
- [**Inverting Gradients - How easy is it to break privacy in federated learning?**](https://arxiv.org/abs/2003.14053) (Geiping et al., 2020)
- [**GAMIN: An Adversarial Approach to Black-Box Model Inversion**](https://arxiv.org/abs/1909.11835) (Aivodji et al., 2019)
- [**Adversarial Privacy Preservation under Attribute Inference Attack**](https://arxiv.org/abs/1906.07902) (Zhao et al., 2019)
- [**Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation**](https://arxiv.org/abs/1906.07902) (Zhao et al., 2020)
- [**Reconstruction of training samples from loss functions**](https://arxiv.org/pdf/1805.07337.pdf) (Sannai, 2018)
- [**A Framework for Evaluating Gradient Leakage Attacks in Federated Learning**](https://arxiv.org/pdf/2004.10397.pdf) (Wei et al., 2020)
- [**Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning**](https://arxiv.org/pdf/1702.07464.pdf) (Hitaj et al., 2017)