Merge pull request #27 from iamgroot42/patch-2

Update README.md
This commit is contained in:
MariaRigaki
2023-10-22 08:56:05 +02:00
committed by GitHub

View File

@@ -9,7 +9,7 @@ This repository contains a curated list of papers related to privacy attacks aga
- [Papers and Code](#papers-and-code)
- [Membership inference](#membership-inference)
- [Reconstruction](#reconstruction)
- [Property inference](#property-inference)
- [Property inference/Distribution inference](#property-inference)
- [Model extraction](#model-extraction)
- [Other](#other)
@@ -169,7 +169,7 @@ Reconstruction attacks cover also attacks known as *model inversion* and *attrib
## Property inference
## Property inference / Distribution inference
- [**Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers**](https://dl.acm.org/doi/10.1504/IJSN.2015.071829) (Ateniese et al., 2015)
- [**Property inference attacks on fully connected neural networks using permutation invariant representations**](https://dl.acm.org/doi/pdf/10.1145/3243734.3243834) (Ganju et al., 2018)
- [**Exploiting unintended feature leakage in collaborative learning**](https://ieeexplore.ieee.org/iel7/8826229/8835208/08835269.pdf) (Melis et al., 2019) ([code](https://github.com/csong27/property-inference-collaborative-ml))
@@ -179,7 +179,9 @@ Reconstruction attacks cover also attacks known as *model inversion* and *attrib
- [**Property Inference Attacks on Convolutional Neural Networks: Influence and Implications of Target Model's Complexity**](https://arxiv.org/abs/2104.13061) (Parisot et al., 2021)
- [**Honest-but-Curious Nets: Sensitive Attributes of Private Inputs can be Secretly Coded into the Entropy of Classifiers' Outputs**](https://arxiv.org/abs/2105.12049) (Malekzadeh et al. 2021) ([code](https://github.com/mmalekzadeh/honest-but-curious-nets))
- [**Property Inference Attacks Against GANs**](https://arxiv.org/abs/2111.07608) (Zhou et al., 2021) ([code](https://github.com/Zhou-Junhao/PIA_GAN))
- [**Formalizing and Estimating Distribution Inference Risks**](https://arxiv.org/abs/2109.06024) (Suri et al., 2022) ([code](https://github.com/iamgroot42/FormEstDistRisks))
- [**Formalizing and Estimating Distribution Inference Risks**](https://arxiv.org/abs/2109.06024) (Suri and Evans, 2022) ([code](https://github.com/iamgroot42/FormEstDistRisks))
- [**Dissecting Distribution Inference**](https://ieeexplore.ieee.org/abstract/document/10136142) (Suri et al., 2023) ([code](https://github.com/iamgroot42/dissecting_dist_inf))
- [**SNAP: Efficient Extraction of Private Properties with Poisoning**](https://ieeexplore.ieee.org/abstract/document/10179334) (Chaudhari et al., 2023) ([code](https://github.com/johnmath/snap-sp23))
## Model extraction