mirror of
https://github.com/FoggedLens/deflock.git
synced 2026-02-12 15:02:45 +00:00
Merge branch 'tiled-data-caching'
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -47,6 +47,7 @@ serverless/*/src/*
|
||||
!serverless/*/src/alpr_counts.py
|
||||
!serverless/*/src/alpr_clusters.py
|
||||
!serverless/*/src/requirements.txt
|
||||
!serverless/*/src/Dockerfile
|
||||
|
||||
# TODO: need a better way to handle python packages
|
||||
|
||||
|
||||
12
serverless/alpr_clusters/src/Dockerfile
Normal file
12
serverless/alpr_clusters/src/Dockerfile
Normal file
@@ -0,0 +1,12 @@
|
||||
# Use the official AWS Lambda Python 3.9 base image
|
||||
FROM amazon/aws-lambda-python:3.9
|
||||
|
||||
# Copy function code
|
||||
COPY alpr_clusters.py ${LAMBDA_TASK_ROOT}
|
||||
|
||||
# Install dependencies
|
||||
COPY requirements.txt .
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
# Set the CMD to your handler
|
||||
CMD ["alpr_clusters.lambda_handler"]
|
||||
@@ -1,10 +1,45 @@
|
||||
import boto3
|
||||
import requests
|
||||
import json
|
||||
from sklearn.cluster import DBSCAN
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
def get_clusters():
|
||||
import boto3
|
||||
import os
|
||||
import time
|
||||
import numpy as np
|
||||
import requests
|
||||
from sklearn.cluster import DBSCAN
|
||||
from typing import Tuple
|
||||
import re
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
def terraform_rate_expression_to_minutes(rate_expression: str) -> Tuple[int, int]:
|
||||
match = re.match(r"rate\((\d+)\s*(day|hour|minute)s?\)", rate_expression)
|
||||
if not match:
|
||||
raise ValueError(f"Invalid rate expression: {rate_expression}")
|
||||
|
||||
value, unit = int(match.group(1)), match.group(2)
|
||||
|
||||
if unit == "day":
|
||||
return value * 24 * 60
|
||||
elif unit == "hour":
|
||||
return value * 60
|
||||
elif unit == "minute":
|
||||
return value
|
||||
else:
|
||||
raise ValueError(f"Unsupported time unit: {unit}")
|
||||
|
||||
UPDATE_RATE_MINS = terraform_rate_expression_to_minutes(os.getenv("UPDATE_RATE_MINS", "rate(60 minutes)"))
|
||||
GRACE_PERIOD_MINS = int(2) # XXX: set expiration a few minutes after in case put object takes a while
|
||||
TILE_SIZE_DEGREES = int(20)
|
||||
|
||||
WHITELISTED_TAGS = [
|
||||
"operator",
|
||||
"manufacturer",
|
||||
"direction",
|
||||
"brand",
|
||||
]
|
||||
|
||||
def get_all_nodes():
|
||||
# Set up the Overpass API query
|
||||
query = """
|
||||
[out:json];
|
||||
@@ -12,31 +47,40 @@ def get_clusters():
|
||||
out body;
|
||||
"""
|
||||
|
||||
url = "http://overpass-api.de/api/interpreter"
|
||||
response = requests.get(
|
||||
url, params={"data": query}, headers={"User-Agent": "DeFlock/1.0"}
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json()["elements"]
|
||||
|
||||
|
||||
def get_clusters(nodes: list[Any]):
|
||||
# Request data from Overpass API
|
||||
print("Requesting data from Overpass API.")
|
||||
url = "http://overpass-api.de/api/interpreter"
|
||||
response = requests.get(url, params={'data': query}, headers={'User-Agent': 'DeFlock/1.0'})
|
||||
data = response.json()
|
||||
|
||||
print("Data received. Parsing nodes...")
|
||||
|
||||
# Parse nodes and extract lat/lon for clustering
|
||||
coordinates = []
|
||||
node_ids = []
|
||||
for element in data['elements']:
|
||||
if element['type'] == 'node':
|
||||
coordinates.append([element['lat'], element['lon']])
|
||||
node_ids.append(element['id'])
|
||||
for element in nodes:
|
||||
if element["type"] == "node":
|
||||
coordinates.append([element["lat"], element["lon"]])
|
||||
node_ids.append(element["id"])
|
||||
|
||||
# Convert coordinates to NumPy array for DBSCAN
|
||||
coordinates = np.array(coordinates)
|
||||
|
||||
# Define the clustering radius (10 miles in meters)
|
||||
# Define the clustering radius (50 miles in meters)
|
||||
radius_miles = 50
|
||||
radius_km = radius_miles * 1.60934 # 1 mile = 1.60934 km
|
||||
radius_in_radians = radius_km / 6371.0 # Earth's radius in km
|
||||
|
||||
# Perform DBSCAN clustering
|
||||
db = DBSCAN(eps=radius_in_radians, min_samples=1, algorithm='ball_tree', metric='haversine').fit(np.radians(coordinates))
|
||||
db = DBSCAN(
|
||||
eps=radius_in_radians, min_samples=1, algorithm="ball_tree", metric="haversine"
|
||||
).fit(np.radians(coordinates))
|
||||
labels = db.labels_
|
||||
|
||||
# Prepare clusters and calculate centroids
|
||||
@@ -45,34 +89,108 @@ def get_clusters():
|
||||
cluster_points = coordinates[labels == label]
|
||||
centroid = np.mean(cluster_points, axis=0)
|
||||
first_node_id = node_ids[labels.tolist().index(label)]
|
||||
|
||||
|
||||
# Store in clusters dict with centroid and first node ID
|
||||
clusters[label] = {
|
||||
"lat": centroid[0],
|
||||
"lon": centroid[1],
|
||||
"id": first_node_id
|
||||
}
|
||||
clusters[label] = {"lat": centroid[0], "lon": centroid[1], "id": first_node_id}
|
||||
|
||||
output = {"clusters": list(clusters.values())}
|
||||
print("Clustering complete.")
|
||||
return output
|
||||
|
||||
|
||||
def segment_regions(nodes: Any, tile_size_degrees: int) -> dict[Any]:
|
||||
print("Segmenting regions...")
|
||||
tile_dict = defaultdict(list)
|
||||
for node in nodes:
|
||||
lat, lon = node["lat"], node["lon"]
|
||||
tile_lat = int(np.floor(lat / tile_size_degrees)) * tile_size_degrees
|
||||
tile_lon = int(np.floor(lon / tile_size_degrees)) * tile_size_degrees
|
||||
bare_node = {
|
||||
"id": node["id"],
|
||||
"lat": lat,
|
||||
"lon": lon,
|
||||
"tags": {k: v for k, v in node["tags"].items() if k in WHITELISTED_TAGS},
|
||||
}
|
||||
tile_dict[f"{tile_lat}/{tile_lon}"].append(bare_node)
|
||||
print("Region segmentation complete.")
|
||||
|
||||
return tile_dict
|
||||
|
||||
def lambda_handler(event, context):
|
||||
alpr_clusters = get_clusters()
|
||||
nodes = get_all_nodes()
|
||||
alpr_clusters = get_clusters(nodes)
|
||||
regions_dict = segment_regions(nodes=nodes, tile_size_degrees=TILE_SIZE_DEGREES)
|
||||
|
||||
s3 = boto3.client('s3')
|
||||
bucket = 'deflock-clusters'
|
||||
key = 'alpr_clusters.json'
|
||||
print("Uploading data to S3...")
|
||||
|
||||
s3.put_object(
|
||||
Bucket=bucket,
|
||||
Key=key,
|
||||
Body=json.dumps(alpr_clusters),
|
||||
ContentType='application/json'
|
||||
)
|
||||
s3 = boto3.client("s3")
|
||||
bucket = "deflock-clusters"
|
||||
bucket_new = "cdn.deflock.me"
|
||||
key = "alpr_clusters.json"
|
||||
|
||||
return {
|
||||
'statusCode': 200,
|
||||
'body': 'Successfully fetched ALPR counts.',
|
||||
}
|
||||
s3.put_object(
|
||||
Bucket=bucket,
|
||||
Key=key,
|
||||
Body=json.dumps(alpr_clusters),
|
||||
ContentType="application/json",
|
||||
)
|
||||
|
||||
# TODO: handle outdated index files when their referenced files are deleted
|
||||
epoch = int(time.time())
|
||||
tile_index = {
|
||||
"expiration_utc": epoch + (UPDATE_RATE_MINS + GRACE_PERIOD_MINS) * 60,
|
||||
"regions": list(regions_dict.keys()),
|
||||
"tile_url": "https://cdn.deflock.me/regions/{lat}/{lon}.json?v=" + str(epoch),
|
||||
"tile_size_degrees": TILE_SIZE_DEGREES,
|
||||
}
|
||||
|
||||
print("Uploading regions to S3...")
|
||||
|
||||
def upload_json_to_s3(bucket, key, body):
|
||||
s3.put_object(
|
||||
Bucket=bucket,
|
||||
Key=key,
|
||||
Body=body,
|
||||
ContentType="application/json",
|
||||
)
|
||||
|
||||
# Use ThreadPoolExecutor for concurrent uploads
|
||||
with ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures = []
|
||||
for latlng_string, elements in regions_dict.items():
|
||||
lat, lon = latlng_string.split("/")
|
||||
key = f"regions/{lat}/{lon}.json"
|
||||
body = json.dumps(elements)
|
||||
futures.append(executor.submit(upload_json_to_s3, bucket_new, key, body))
|
||||
|
||||
# add index file
|
||||
futures.append(executor.submit(upload_json_to_s3, bucket_new, "regions/index.json", json.dumps(tile_index)))
|
||||
|
||||
# Wait for all futures to complete
|
||||
for future in futures:
|
||||
future.result()
|
||||
|
||||
print("Regions uploaded to S3. Done!")
|
||||
|
||||
return {
|
||||
"statusCode": 200,
|
||||
"body": "Successfully clustered.",
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from pathlib import Path
|
||||
|
||||
nodes_file_path = Path("nodes.json")
|
||||
if nodes_file_path.exists():
|
||||
nodes = json.load(nodes_file_path.open())
|
||||
else:
|
||||
nodes = get_all_nodes()
|
||||
with nodes_file_path.open("w") as f:
|
||||
json.dump(nodes, f)
|
||||
|
||||
|
||||
|
||||
regions_dict = segment_regions(nodes=nodes, tile_size_degrees=5)
|
||||
with open("regions_dict.json", "w") as f:
|
||||
json.dump(regions_dict, f)
|
||||
|
||||
@@ -13,5 +13,6 @@ module "alpr_clusters" {
|
||||
module_name = "alpr_clusters"
|
||||
source = "./modules/alpr_clusters"
|
||||
deflock_stats_bucket = var.deflock_stats_bucket
|
||||
deflock_cdn_bucket = var.deflock_cdn_bucket
|
||||
rate = "rate(1 day)"
|
||||
}
|
||||
|
||||
@@ -15,6 +15,11 @@ resource "aws_iam_role" "lambda_role" {
|
||||
})
|
||||
}
|
||||
|
||||
resource "aws_iam_role_policy_attachment" "lambda_basic_execution" {
|
||||
role = aws_iam_role.lambda_role.name
|
||||
policy_arn = "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
|
||||
}
|
||||
|
||||
resource "aws_iam_policy" "lambda_s3_write_policy" {
|
||||
name = "${var.module_name}_lambda_s3_write_policy"
|
||||
description = "Policy for Lambda to write to S3 bucket ${var.deflock_stats_bucket}"
|
||||
@@ -28,7 +33,10 @@ resource "aws_iam_policy" "lambda_s3_write_policy" {
|
||||
"s3:PutObjectAcl"
|
||||
]
|
||||
Effect = "Allow"
|
||||
Resource = "arn:aws:s3:::${var.deflock_stats_bucket}/${var.output_filename}"
|
||||
Resource = [
|
||||
"arn:aws:s3:::${var.deflock_cdn_bucket}/*",
|
||||
"arn:aws:s3:::${var.deflock_stats_bucket}/*"
|
||||
]
|
||||
}
|
||||
]
|
||||
})
|
||||
@@ -44,7 +52,13 @@ resource "aws_lambda_function" "overpass_lambda" {
|
||||
role = aws_iam_role.lambda_role.arn
|
||||
package_type = "Image"
|
||||
image_uri = "${aws_ecr_repository.lambda_repository.repository_url}:latest"
|
||||
timeout = 90
|
||||
timeout = 180
|
||||
memory_size = 512
|
||||
environment {
|
||||
variables = {
|
||||
UPDATE_RATE_MINS = var.rate
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
resource "aws_cloudwatch_event_rule" "lambda_rule" {
|
||||
@@ -70,3 +84,8 @@ resource "aws_lambda_permission" "allow_cloudwatch_to_call_lambda" {
|
||||
resource "aws_ecr_repository" "lambda_repository" {
|
||||
name = "${var.module_name}-lambda"
|
||||
}
|
||||
|
||||
resource "aws_cloudwatch_log_group" "lambda_log_group" {
|
||||
name = "/aws/lambda/${aws_lambda_function.overpass_lambda.function_name}"
|
||||
retention_in_days = 14
|
||||
}
|
||||
|
||||
@@ -11,6 +11,10 @@ variable "deflock_stats_bucket" {
|
||||
description = "S3 bucket for the ALPR clusters JSON file"
|
||||
}
|
||||
|
||||
variable "deflock_cdn_bucket" {
|
||||
description = "S3 bucket for the CDN"
|
||||
}
|
||||
|
||||
variable "rate" {
|
||||
description = "Rate at which to run the Lambda function"
|
||||
}
|
||||
|
||||
@@ -2,3 +2,8 @@ variable "deflock_stats_bucket" {
|
||||
description = "S3 bucket for the ALPR counts JSON file"
|
||||
default = "deflock-clusters"
|
||||
}
|
||||
|
||||
variable "deflock_cdn_bucket" {
|
||||
description = "S3 bucket for the CDN"
|
||||
default = "cdn.deflock.me"
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user