mirror of
https://github.com/FoggedLens/deflock.git
synced 2026-02-12 15:02:45 +00:00
Feat/segment node regions (#21)
* lint alpr_clusters.py * feat: Segment nodes into 5x5 regions
This commit is contained in:
@@ -1,10 +1,14 @@
|
||||
import boto3
|
||||
import requests
|
||||
import json
|
||||
from sklearn.cluster import DBSCAN
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
def get_clusters():
|
||||
import boto3
|
||||
import numpy as np
|
||||
import requests
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
|
||||
def get_all_nodes():
|
||||
# Set up the Overpass API query
|
||||
query = """
|
||||
[out:json];
|
||||
@@ -12,31 +16,40 @@ def get_clusters():
|
||||
out body;
|
||||
"""
|
||||
|
||||
url = "http://overpass-api.de/api/interpreter"
|
||||
response = requests.get(
|
||||
url, params={"data": query}, headers={"User-Agent": "DeFlock/1.0"}
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json()["elements"]
|
||||
|
||||
|
||||
def get_clusters(nodes: list[Any]):
|
||||
# Request data from Overpass API
|
||||
print("Requesting data from Overpass API.")
|
||||
url = "http://overpass-api.de/api/interpreter"
|
||||
response = requests.get(url, params={'data': query}, headers={'User-Agent': 'DeFlock/1.0'})
|
||||
data = response.json()
|
||||
|
||||
print("Data received. Parsing nodes...")
|
||||
|
||||
# Parse nodes and extract lat/lon for clustering
|
||||
coordinates = []
|
||||
node_ids = []
|
||||
for element in data['elements']:
|
||||
if element['type'] == 'node':
|
||||
coordinates.append([element['lat'], element['lon']])
|
||||
node_ids.append(element['id'])
|
||||
for element in nodes:
|
||||
if element["type"] == "node":
|
||||
coordinates.append([element["lat"], element["lon"]])
|
||||
node_ids.append(element["id"])
|
||||
|
||||
# Convert coordinates to NumPy array for DBSCAN
|
||||
coordinates = np.array(coordinates)
|
||||
|
||||
# Define the clustering radius (10 miles in meters)
|
||||
# Define the clustering radius (50 miles in meters)
|
||||
radius_miles = 50
|
||||
radius_km = radius_miles * 1.60934 # 1 mile = 1.60934 km
|
||||
radius_in_radians = radius_km / 6371.0 # Earth's radius in km
|
||||
|
||||
# Perform DBSCAN clustering
|
||||
db = DBSCAN(eps=radius_in_radians, min_samples=1, algorithm='ball_tree', metric='haversine').fit(np.radians(coordinates))
|
||||
db = DBSCAN(
|
||||
eps=radius_in_radians, min_samples=1, algorithm="ball_tree", metric="haversine"
|
||||
).fit(np.radians(coordinates))
|
||||
labels = db.labels_
|
||||
|
||||
# Prepare clusters and calculate centroids
|
||||
@@ -45,34 +58,72 @@ def get_clusters():
|
||||
cluster_points = coordinates[labels == label]
|
||||
centroid = np.mean(cluster_points, axis=0)
|
||||
first_node_id = node_ids[labels.tolist().index(label)]
|
||||
|
||||
|
||||
# Store in clusters dict with centroid and first node ID
|
||||
clusters[label] = {
|
||||
"lat": centroid[0],
|
||||
"lon": centroid[1],
|
||||
"id": first_node_id
|
||||
}
|
||||
clusters[label] = {"lat": centroid[0], "lon": centroid[1], "id": first_node_id}
|
||||
|
||||
output = {"clusters": list(clusters.values())}
|
||||
print("Clustering complete.")
|
||||
return output
|
||||
|
||||
|
||||
def segment_regions(nodes: Any, tile_size_degrees: int) -> list[dict[str, Any]]:
|
||||
tile_dict = defaultdict(list)
|
||||
for node in nodes["elements"]:
|
||||
lat, lon = node["lat"], node["lon"]
|
||||
tile_lat = int(np.floor(lat / tile_size_degrees)) * tile_size_degrees
|
||||
tile_lon = int(np.floor(lon / tile_size_degrees)) * tile_size_degrees
|
||||
tile_dict[(tile_lat, tile_lon)].append(node)
|
||||
|
||||
tile_list = []
|
||||
for region, nodes in tile_dict.items():
|
||||
tile_list.append({"lat": region[0], "lon": region[1], "nodes": nodes})
|
||||
|
||||
return tile_list
|
||||
|
||||
|
||||
def lambda_handler(event, context):
|
||||
alpr_clusters = get_clusters()
|
||||
nodes = get_all_nodes()
|
||||
alpr_clusters = get_clusters(nodes)
|
||||
regions = segment_regions(nodes=nodes, tile_size_degrees=5)
|
||||
|
||||
s3 = boto3.client('s3')
|
||||
bucket = 'deflock-clusters'
|
||||
key = 'alpr_clusters.json'
|
||||
s3 = boto3.client("s3")
|
||||
bucket = "deflock-clusters"
|
||||
key = "alpr_clusters.json"
|
||||
|
||||
s3.put_object(
|
||||
Bucket=bucket,
|
||||
Key=key,
|
||||
Body=json.dumps(alpr_clusters),
|
||||
ContentType='application/json'
|
||||
)
|
||||
s3.put_object(
|
||||
Bucket=bucket,
|
||||
Key=key,
|
||||
Body=json.dumps(alpr_clusters),
|
||||
ContentType="application/json",
|
||||
)
|
||||
|
||||
return {
|
||||
'statusCode': 200,
|
||||
'body': 'Successfully fetched ALPR counts.',
|
||||
}
|
||||
for region in regions:
|
||||
lat, lon = region["lat"], region["lon"]
|
||||
s3.put_object(
|
||||
Bucket=bucket,
|
||||
Key=f"regions/{lat}/{lon}.json",
|
||||
Body=json.dumps(region["nodes"]),
|
||||
ContentType="application/json",
|
||||
)
|
||||
|
||||
return {
|
||||
"statusCode": 200,
|
||||
"body": "Successfully fetched ALPR counts.",
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from pathlib import Path
|
||||
|
||||
nodes_file_path = Path("nodes.json")
|
||||
if nodes_file_path.exists():
|
||||
nodes = json.load(nodes_file_path.open())
|
||||
else:
|
||||
nodes = get_all_nodes()
|
||||
with nodes_file_path.open("w") as f:
|
||||
json.dump(nodes, f)
|
||||
|
||||
regions = segment_regions(nodes=nodes, tile_size_degrees=5)
|
||||
with open("regions.json", "w") as f:
|
||||
json.dump(regions, f)
|
||||
|
||||
Reference in New Issue
Block a user