use arm64 for alpr_cache (renamed from alpr_cluster)

This commit is contained in:
Will Freeman
2025-12-04 19:11:03 -07:00
parent 416f1930d9
commit 7b9b0a7244
10 changed files with 25 additions and 173 deletions

View File

@@ -1,6 +1,6 @@
#!/bin/bash
ECR_REPO_URL=912821578123.dkr.ecr.us-east-1.amazonaws.com/alpr_clusters-lambda
ECR_REPO_URL=912821578123.dkr.ecr.us-east-1.amazonaws.com/alpr_cache-lambda
set -e
@@ -12,20 +12,15 @@ fi
cd src
# build Docker image
docker build -t alpr_clusters .
# tag docker image with ECR repo
docker tag alpr_clusters:latest $ECR_REPO_URL:latest
# login to ECR
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin $ECR_REPO_URL
# push Docker image to ECR
# build and push Docker image to ECR for ARM64 using legacy format
docker buildx build --platform linux/arm64 -t $ECR_REPO_URL:latest --load .
docker push $ECR_REPO_URL:latest
# update lambda function
export AWS_PAGER=""
aws lambda update-function-code --function-name alpr_clusters --image-uri $ECR_REPO_URL:latest
# export AWS_PAGER=""
# aws lambda update-function-code --function-name alpr_cache --image-uri $ECR_REPO_URL:latest
echo "Deployed!"

View File

@@ -0,0 +1,12 @@
# Use the official AWS Lambda Python 3.14 base image from public ECR
FROM public.ecr.aws/lambda/python:3.14-arm64
# Copy function code
COPY alpr_cache.py ${LAMBDA_TASK_ROOT}
# Install dependencies
COPY requirements.txt .
RUN pip install -r requirements.txt
# Set the CMD to your handler
CMD ["alpr_cache.lambda_handler"]

View File

@@ -1,12 +0,0 @@
# Use the official AWS Lambda Python 3.14 base image
FROM amazon/aws-lambda-python:3.14-x86_64
# Copy function code
COPY alpr_clusters.py ${LAMBDA_TASK_ROOT}
# Install dependencies
COPY requirements.txt .
RUN pip install -r requirements.txt
# Set the CMD to your handler
CMD ["alpr_clusters.lambda_handler"]

View File

@@ -1,144 +0,0 @@
import json
from collections import defaultdict
from typing import Any
import boto3
import os
import time
import math
import requests
import re
from concurrent.futures import ThreadPoolExecutor
def terraform_rate_expression_to_minutes(rate_expression: str) -> int:
match = re.match(r"rate\((\d+)\s*(day|hour|minute)s?\)", rate_expression)
if not match:
raise ValueError(f"Invalid rate expression: {rate_expression}")
value, unit = int(match.group(1)), match.group(2)
if unit == "day":
return value * 24 * 60
elif unit == "hour":
return value * 60
elif unit == "minute":
return value
else:
raise ValueError(f"Unsupported time unit: {unit}")
UPDATE_RATE_MINS = terraform_rate_expression_to_minutes(os.getenv("UPDATE_RATE_MINS", "rate(60 minutes)"))
GRACE_PERIOD_MINS = int(2) # XXX: set expiration a few minutes after in case put object takes a while
TILE_SIZE_DEGREES = int(20)
WHITELISTED_TAGS = [
"operator",
"manufacturer",
"direction",
"brand",
"camera:direction",
"surveillance:brand",
"surveillance:operator",
"surveillance:manufacturer"
]
def get_all_nodes():
# Set up the Overpass API query
query = """
[out:json];
node["man_made"="surveillance"]["surveillance:type"="ALPR"];
out body;
"""
url = "http://overpass-api.de/api/interpreter"
response = requests.get(
url, params={"data": query}, headers={"User-Agent": "DeFlock/1.0"}
)
response.raise_for_status()
return response.json()["elements"]
def segment_regions(nodes: Any, tile_size_degrees: int) -> dict[str, list[Any]]:
print("Segmenting regions...")
tile_dict = defaultdict(list)
for node in nodes:
lat, lon = node["lat"], node["lon"]
tile_lat = math.floor(lat / tile_size_degrees) * tile_size_degrees
tile_lon = math.floor(lon / tile_size_degrees) * tile_size_degrees
bare_node = {
"id": node["id"],
"lat": lat,
"lon": lon,
"tags": {k: v for k, v in node["tags"].items() if k in WHITELISTED_TAGS},
}
tile_dict[f"{tile_lat}/{tile_lon}"].append(bare_node)
print("Region segmentation complete.")
return tile_dict
def lambda_handler(event, context):
nodes = get_all_nodes()
regions_dict = segment_regions(nodes=nodes, tile_size_degrees=TILE_SIZE_DEGREES)
print("Uploading data to S3...")
s3 = boto3.client("s3")
bucket_new = os.getenv("OUTPUT_BUCKET", "cdn.deflock.me")
# TODO: handle outdated index files when their referenced files are deleted
epoch = int(time.time())
tile_index = {
"expiration_utc": epoch + (UPDATE_RATE_MINS + GRACE_PERIOD_MINS) * 60,
"regions": list(regions_dict.keys()),
"tile_url": "https://cdn.deflock.me/regions/{lat}/{lon}.json?v=" + str(epoch),
"tile_size_degrees": TILE_SIZE_DEGREES,
}
print("Uploading regions to S3...")
def upload_json_to_s3(bucket, key, body):
s3.put_object(
Bucket=bucket,
Key=key,
Body=body,
ContentType="application/json",
)
# Use ThreadPoolExecutor for concurrent uploads
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for latlng_string, elements in regions_dict.items():
lat, lon = latlng_string.split("/")
key = f"regions/{lat}/{lon}.json"
body = json.dumps(elements)
futures.append(executor.submit(upload_json_to_s3, bucket_new, key, body))
# add index file
futures.append(executor.submit(upload_json_to_s3, bucket_new, "regions/index.json", json.dumps(tile_index)))
# Wait for all futures to complete
for future in futures:
future.result()
print("Regions uploaded to S3. Done!")
return {
"statusCode": 200,
"body": "Successfully cached OSM nodes",
}
if __name__ == "__main__":
from pathlib import Path
nodes_file_path = Path("nodes.json")
if nodes_file_path.exists():
nodes = json.load(nodes_file_path.open())
else:
nodes = get_all_nodes()
with nodes_file_path.open("w") as f:
json.dump(nodes, f)
regions_dict = segment_regions(nodes=nodes, tile_size_degrees=5)
with open("regions_dict.json", "w") as f:
json.dump(regions_dict, f)

View File

@@ -10,11 +10,11 @@ module "alpr_counts" {
sns_topic_arn = aws_sns_topic.lambda_alarms.arn
}
module "alpr_clusters" {
module_name = "alpr_clusters"
source = "./modules/alpr_clusters"
module "alpr_cache" {
module_name = "alpr_cache"
source = "./modules/alpr_cache"
deflock_cdn_bucket = var.deflock_cdn_bucket
rate = "rate(1 hour)"
rate = "rate(30 minutes)"
sns_topic_arn = aws_sns_topic.lambda_alarms.arn
}

View File

@@ -53,6 +53,7 @@ resource "aws_lambda_function" "overpass_lambda" {
image_uri = "${aws_ecr_repository.lambda_repository.repository_url}:latest"
timeout = 180
memory_size = 512
architectures = ["arm64"]
environment {
variables = {
UPDATE_RATE_MINS = var.rate
@@ -108,4 +109,4 @@ resource "aws_cloudwatch_metric_alarm" "lambda_error_alarm" {
threshold = 0
comparison_operator = "GreaterThanThreshold"
alarm_actions = [var.sns_topic_arn]
}
}

View File

@@ -1,3 +1,3 @@
output "ecr_repository_url" {
value = aws_ecr_repository.lambda_repository.repository_url
}
}

View File

@@ -13,4 +13,4 @@ variable "rate" {
variable "sns_topic_arn" {
description = "The ARN of the SNS topic for Lambda alarms"
type = string
}
}