Files
fuzzforge_ai/volumes/env/README.md
Songbird99 f77c3ff1e9 Feature/litellm proxy (#27)
* feat: seed governance config and responses routing

* Add env-configurable timeout for proxy providers

* Integrate LiteLLM OTEL collector and update docs

* Make .env.litellm optional for LiteLLM proxy

* Add LiteLLM proxy integration with model-agnostic virtual keys

Changes:
- Bootstrap generates 3 virtual keys with individual budgets (CLI: $100, Task-Agent: $25, Cognee: $50)
- Task-agent loads config at runtime via entrypoint script to wait for bootstrap completion
- All keys are model-agnostic by default (no LITELLM_DEFAULT_MODELS restrictions)
- Bootstrap handles database/env mismatch after docker prune by deleting stale aliases
- CLI and Cognee configured to use LiteLLM proxy with virtual keys
- Added comprehensive documentation in volumes/env/README.md

Technical details:
- task-agent entrypoint waits for keys in .env file before starting uvicorn
- Bootstrap creates/updates TASK_AGENT_API_KEY, COGNEE_API_KEY, and OPENAI_API_KEY
- Removed hardcoded API keys from docker-compose.yml
- All services route through http://localhost:10999 proxy

* Fix CLI not loading virtual keys from global .env

Project .env files with empty OPENAI_API_KEY values were overriding
the global virtual keys. Updated _load_env_file_if_exists to only
override with non-empty values.

* Fix agent executor not passing API key to LiteLLM

The agent was initializing LiteLlm without api_key or api_base,
causing authentication errors when using the LiteLLM proxy. Now
reads from OPENAI_API_KEY/LLM_API_KEY and LLM_ENDPOINT environment
variables and passes them to LiteLlm constructor.

* Auto-populate project .env with virtual key from global config

When running 'ff init', the command now checks for a global
volumes/env/.env file and automatically uses the OPENAI_API_KEY
virtual key if found. This ensures projects work with LiteLLM
proxy out of the box without manual key configuration.

* docs: Update README with LiteLLM configuration instructions

Add note about LITELLM_GEMINI_API_KEY configuration and clarify that OPENAI_API_KEY default value should not be changed as it's used for the LLM proxy.

* Refactor workflow parameters to use JSON Schema defaults

Consolidates parameter defaults into JSON Schema format, removing the separate default_parameters field. Adds extract_defaults_from_json_schema() helper to extract defaults from the standard schema structure. Updates LiteLLM proxy config to use LITELLM_OPENAI_API_KEY environment variable.

* Remove .env.example from task_agent

* Fix MDX syntax error in llm-proxy.md

* fix: apply default parameters from metadata.yaml automatically

Fixed TemporalManager.run_workflow() to correctly apply default parameter
values from workflow metadata.yaml files when parameters are not provided
by the caller.

Previous behavior:
- When workflow_params was empty {}, the condition
  `if workflow_params and 'parameters' in metadata` would fail
- Parameters would not be extracted from schema, resulting in workflows
  receiving only target_id with no other parameters

New behavior:
- Removed the `workflow_params and` requirement from the condition
- Now explicitly checks for defaults in parameter spec
- Applies defaults from metadata.yaml automatically when param not provided
- Workflows receive all parameters with proper fallback:
  provided value > metadata default > None

This makes metadata.yaml the single source of truth for parameter defaults,
removing the need for workflows to implement defensive default handling.

Affected workflows:
- llm_secret_detection (was failing with KeyError)
- All other workflows now benefit from automatic default application

Co-authored-by: tduhamel42 <tduhamel@fuzzinglabs.com>
2025-11-04 14:04:10 +01:00

90 lines
2.1 KiB
Markdown

# FuzzForge LiteLLM Proxy Configuration
This directory contains configuration for the LiteLLM proxy with model-agnostic virtual keys.
## Quick Start (Fresh Clone)
### 1. Create Your `.env` File
```bash
cp .env.template .env
```
### 2. Add Your Provider API Keys
Edit `.env` and add your **real** API keys:
```bash
LITELLM_OPENAI_API_KEY=sk-proj-YOUR-OPENAI-KEY-HERE
LITELLM_ANTHROPIC_API_KEY=sk-ant-api03-YOUR-ANTHROPIC-KEY-HERE
```
### 3. Start Services
```bash
cd ../.. # Back to repo root
COMPOSE_PROFILES=secrets docker compose up -d
```
Bootstrap will automatically:
- Generate 3 virtual keys with individual budgets
- Write them to your `.env` file
- No model restrictions (model-agnostic)
## Files
- **`.env.template`** - Clean template (checked into git)
- **`.env`** - Your real keys (git ignored, you create this)
- **`.env.example`** - Legacy example
## Virtual Keys (Auto-Generated)
Bootstrap creates 3 keys with budget controls:
| Key | Budget | Duration | Used By |
|-----|--------|----------|---------|
| `OPENAI_API_KEY` | $100 | 30 days | CLI, SDK |
| `TASK_AGENT_API_KEY` | $25 | 30 days | Task Agent |
| `COGNEE_API_KEY` | $50 | 30 days | Cognee |
All keys are **model-agnostic** by default (no restrictions).
## Using Models
Registered models in `volumes/litellm/proxy_config.yaml`:
- `gpt-5-mini``openai/gpt-5-mini`
- `claude-sonnet-4-5``anthropic/claude-sonnet-4-5-20250929`
- `text-embedding-3-large``openai/text-embedding-3-large`
### Use Registered Aliases:
```bash
fuzzforge workflow run llm_secret_detection . -n llm_model=gpt-5-mini
fuzzforge workflow run llm_secret_detection . -n llm_model=claude-sonnet-4-5
```
### Use Any Model (Direct):
```bash
# Works without registering first!
fuzzforge workflow run llm_secret_detection . -n llm_model=openai/gpt-5-nano
```
## Proxy UI
http://localhost:10999/ui
- User: `fuzzforge` / Pass: `fuzzforge123`
## Troubleshooting
```bash
# Check bootstrap logs
docker compose logs llm-proxy-bootstrap
# Verify keys generated
grep "API_KEY=" .env | grep -v "^#" | grep -v "your-"
# Restart services
docker compose restart llm-proxy task-agent
```