Files
fuzzforge_ai/backend
tduhamel42 11b3e6db6a fix: Resolve CI failures for v0.7.0 release
Fix lint errors:
- Remove unused Optional import from gitleaks workflow
- Remove unused logging import from trufflehog activities

Fix documentation broken links:
- Update workspace-isolation links to use /docs/ prefix in resource-management.md
- Update workspace-isolation links to use /docs/ prefix in create-workflow.md

Fix benchmark dependency:
- Add fuzzforge-sdk installation to benchmark workflow
- SDK is required for bench_comparison.py import

All CI checks should now pass.
2025-10-16 12:55:20 +02:00
..
2025-09-29 21:26:41 +02:00
2025-10-16 12:23:56 +02:00

FuzzForge Backend

A stateless API server for security testing workflow orchestration using Temporal. This system dynamically discovers workflows, executes them in isolated worker environments, and returns findings in SARIF format.

Architecture Overview

Core Components

  1. Workflow Discovery System: Automatically discovers workflows at startup
  2. Module System: Reusable components (scanner, analyzer, reporter) with a common interface
  3. Temporal Integration: Handles workflow orchestration, execution, and monitoring with vertical workers
  4. File Upload & Storage: HTTP multipart upload to MinIO for target files
  5. SARIF Output: Standardized security findings format

Key Features

  • Stateless: No persistent data, fully scalable
  • Generic: No hardcoded workflows, automatic discovery
  • Isolated: Each workflow runs in specialized vertical workers
  • Extensible: Easy to add new workflows and modules
  • Secure: File upload with MinIO storage, automatic cleanup via lifecycle policies
  • Observable: Comprehensive logging and status tracking

Quick Start

Prerequisites

  • Docker and Docker Compose

Installation

From the project root, start all services:

docker-compose -f docker-compose.temporal.yaml up -d

This will start:

Note: MinIO console login: fuzzforge / fuzzforge123

API Endpoints

Workflows

  • GET /workflows - List all discovered workflows
  • GET /workflows/{name}/metadata - Get workflow metadata and parameters
  • GET /workflows/{name}/parameters - Get workflow parameter schema
  • GET /workflows/metadata/schema - Get metadata.yaml schema
  • POST /workflows/{name}/submit - Submit a workflow for execution (path-based, legacy)
  • POST /workflows/{name}/upload-and-submit - Upload local files and submit workflow (recommended)

Runs

  • GET /runs/{run_id}/status - Get run status
  • GET /runs/{run_id}/findings - Get SARIF findings from completed run
  • GET /runs/{workflow_name}/findings/{run_id} - Alternative findings endpoint with workflow name

Workflow Structure

Each workflow must have:

toolbox/workflows/{workflow_name}/
   workflow.py       # Temporal workflow definition
   metadata.yaml     # Mandatory metadata (parameters, version, vertical, etc.)
   requirements.txt  # Optional Python dependencies (installed in vertical worker)

Note: With Temporal architecture, workflows run in pre-built vertical workers (e.g., worker-rust, worker-android), not individual Docker containers. The workflow code is mounted as a volume and discovered at runtime.

Example metadata.yaml

name: security_assessment
version: "1.0.0"
description: "Comprehensive security analysis workflow"
author: "FuzzForge Team"
category: "comprehensive"
vertical: "rust"  # Routes to worker-rust
tags:
  - "security"
  - "analysis"
  - "comprehensive"

requirements:
  tools:
    - "file_scanner"
    - "security_analyzer"
    - "sarif_reporter"
  resources:
    memory: "512Mi"
    cpu: "500m"
    timeout: 1800

has_docker: true

parameters:
  type: object
  properties:
    target_path:
      type: string
      default: "/workspace"
      description: "Path to analyze"
    scanner_config:
      type: object
      description: "Scanner configuration"
      properties:
        max_file_size:
          type: integer
          description: "Maximum file size to scan (bytes)"

output_schema:
  type: object
  properties:
    sarif:
      type: object
      description: "SARIF-formatted security findings"
    summary:
      type: object
      description: "Scan execution summary"

Metadata Field Descriptions

  • name: Workflow identifier (must match directory name)
  • version: Semantic version (x.y.z format)
  • description: Human-readable description of the workflow
  • author: Workflow author/maintainer
  • category: Workflow category (comprehensive, specialized, fuzzing, focused)
  • tags: Array of descriptive tags for categorization
  • requirements.tools: Required security tools that the workflow uses
  • requirements.resources: Resource requirements enforced at runtime:
    • memory: Memory limit (e.g., "512Mi", "1Gi")
    • cpu: CPU limit (e.g., "500m" for 0.5 cores, "1" for 1 core)
    • timeout: Maximum execution time in seconds
  • parameters: JSON Schema object defining workflow parameters
  • output_schema: Expected output format (typically SARIF)

Resource Requirements

Resource requirements defined in workflow metadata are automatically enforced. Users can override defaults when submitting workflows:

curl -X POST "http://localhost:8000/workflows/security_assessment/submit" \
  -H "Content-Type: application/json" \
  -d '{
    "target_path": "/tmp/project",
    "resource_limits": {
      "memory_limit": "1Gi",
      "cpu_limit": "1"
    }
  }'

Resource precedence: User limits > Workflow requirements > System defaults

File Upload and Target Access

Upload Endpoint

The backend provides an upload endpoint for submitting workflows with local files:

POST /workflows/{workflow_name}/upload-and-submit
Content-Type: multipart/form-data

Parameters:
  file: File upload (supports .tar.gz for directories)
  parameters: JSON string of workflow parameters (optional)
  timeout: Execution timeout in seconds (optional)

Example using curl:

# Upload a directory (create tarball first)
tar -czf project.tar.gz /path/to/project
curl -X POST "http://localhost:8000/workflows/security_assessment/upload-and-submit" \
  -F "file=@project.tar.gz" \
  -F "parameters={\"check_secrets\":true}"

# Upload a single file
curl -X POST "http://localhost:8000/workflows/security_assessment/upload-and-submit" \
  -F "file=@binary.elf"

Storage Flow

  1. CLI/API uploads file via HTTP multipart
  2. Backend receives file and streams to temporary location (max 10GB)
  3. Backend uploads to MinIO with generated target_id
  4. Workflow is submitted to Temporal with target_id
  5. Worker downloads target from MinIO to local cache
  6. Workflow processes target from cache
  7. MinIO lifecycle policy deletes files after 7 days

Advantages

  • No host filesystem access required - workers can run anywhere
  • Automatic cleanup - lifecycle policies prevent disk exhaustion
  • Caching - repeated workflows reuse cached targets
  • Multi-host ready - targets accessible from any worker
  • Secure - isolated storage, no arbitrary host path access

Module Development

Modules implement the BaseModule interface:

from src.toolbox.modules.base import BaseModule, ModuleMetadata, ModuleResult

class MyModule(BaseModule):
    def get_metadata(self) -> ModuleMetadata:
        return ModuleMetadata(
            name="my_module",
            version="1.0.0",
            description="Module description",
            category="scanner",
            ...
        )

    async def execute(self, config: Dict, workspace: Path) -> ModuleResult:
        # Module logic here
        findings = [...]
        return self.create_result(findings=findings)

    def validate_config(self, config: Dict) -> bool:
        # Validate configuration
        return True

Submitting a Workflow

# Automatic tarball and upload
tar -czf project.tar.gz /home/user/project
curl -X POST "http://localhost:8000/workflows/security_assessment/upload-and-submit" \
  -F "file=@project.tar.gz" \
  -F "parameters={\"scanner_config\":{\"patterns\":[\"*.py\"]},\"analyzer_config\":{\"check_secrets\":true}}"

Legacy Path-Based Submission

# Only works if backend and target are on same machine
curl -X POST "http://localhost:8000/workflows/security_assessment/submit" \
  -H "Content-Type: application/json" \
  -d '{
    "target_path": "/home/user/project",
    "parameters": {
      "scanner_config": {"patterns": ["*.py"]},
      "analyzer_config": {"check_secrets": true}
    }
  }'

Getting Findings

curl "http://localhost:8000/runs/{run_id}/findings"

Returns SARIF-formatted findings:

{
  "workflow": "security_assessment",
  "run_id": "abc-123",
  "sarif": {
    "version": "2.1.0",
    "runs": [{
      "tool": {...},
      "results": [...]
    }]
  }
}

Security Considerations

  1. File Upload Security: Files uploaded to MinIO with isolated storage
  2. Read-Only Default: Target files accessed as read-only unless explicitly set
  3. Worker Isolation: Each workflow runs in isolated vertical workers
  4. Resource Limits: Can set CPU/memory limits per worker
  5. Automatic Cleanup: MinIO lifecycle policies delete old files after 7 days

Development

Adding a New Workflow

  1. Create directory: toolbox/workflows/my_workflow/
  2. Add workflow.py with a Temporal workflow (using @workflow.defn)
  3. Add mandatory metadata.yaml with vertical field
  4. Restart the appropriate worker: docker-compose -f docker-compose.temporal.yaml restart worker-rust
  5. Worker will automatically discover and register the new workflow

Adding a New Module

  1. Create module in toolbox/modules/{category}/
  2. Implement BaseModule interface
  3. Use in workflows via import

Adding a New Vertical Worker

  1. Create worker directory: workers/{vertical}/
  2. Create Dockerfile with required tools
  3. Add worker to docker-compose.temporal.yaml
  4. Worker will automatically discover workflows with matching vertical in metadata