Files
god-eye/EXAMPLES.md
Vyntral 14c26dc726 feat: Add Multi-Agent AI Orchestration with 8 specialized agents
- Implement 8 specialized AI agents (XSS, SQLi, Auth, API, Crypto, Secrets, Headers, General)
- Add fast type-based routing for finding classification
- Include OWASP-aligned knowledge bases per agent
- Add agent handoff logic for cross-vulnerability detection
- Optimize timeouts and parallelism for local LLM
- Add new modules: cache, network, fingerprint, secrets, cloud, API, discovery
- Update documentation with multi-agent feature
2025-11-21 15:23:11 +01:00

11 KiB

God's Eye - AI Integration Examples

🎯 Real-World Usage Examples

Example 1: Bug Bounty Recon

# Initial reconnaissance with AI analysis
./god-eye -d target.com --enable-ai -o recon.json -f json

# Filter high-severity AI findings
cat recon.json | jq '.[] | select(.ai_severity == "critical" or .ai_severity == "high")'

# Extract subdomains with CVEs
cat recon.json | jq '.[] | select(.cve_findings | length > 0)'

# Get AI-detected admin panels
cat recon.json | jq '.[] | select(.admin_panels | length > 0)'

Example 2: Pentesting Workflow

# Fast scan for initial scope
./god-eye -d client.com --enable-ai --no-brute --active

# Deep analysis on interesting findings
./god-eye -d client.com --enable-ai --ai-deep -c 500

# Generate report for client
./god-eye -d client.com --enable-ai -o client_report.txt

Example 3: Security Audit

# Comprehensive audit with all checks
./god-eye -d company.com --enable-ai

# Focus on specific issues
./god-eye -d company.com --enable-ai --active | grep -E "AI:CRITICAL|CVE"

# Export for further analysis
./god-eye -d company.com --enable-ai -o audit.csv -f csv

Example 4: Quick Triage

# Super fast scan (no brute-force, cascade enabled)
time ./god-eye -d target.com --enable-ai --no-brute

# Should complete in ~30-60 seconds for small targets

Example 5: Development Environment Check

# Find exposed dev/staging environments
./god-eye -d company.com --enable-ai | grep -E "dev|staging|test"

# AI will identify debug mode, error messages, etc.

📊 Expected Output Examples

Without AI

═══════════════════════════════════════════════════
● api.example.com [200] ⚡156ms
    IP: 93.184.216.34
    Tech: nginx, React
    FOUND: Admin: /admin [200]
    JS SECRET: api_key: "sk_test_123..."
═══════════════════════════════════════════════════

With AI Enabled

═══════════════════════════════════════════════════
● api.example.com [200] ⚡156ms
    IP: 93.184.216.34
    Tech: nginx, React
    FOUND: Admin: /admin [200]
    JS SECRET: api_key: "sk_test_123..."
    AI:CRITICAL: Hardcoded Stripe test API key exposed in main.js
                 Authentication bypass possible via admin parameter
                 React version 16.8.0 has known XSS vulnerability
                 Missing rate limiting on /api/v1/users endpoint
                 (1 more findings...)
                 model: deepseek-r1:1.5b→qwen2.5-coder:7b
    CVE: React: CVE-2020-15168 - XSS vulnerability in development mode
═══════════════════════════════════════════════════

AI Report Section

🧠 AI-POWERED ANALYSIS (cascade: deepseek-r1:1.5b + qwen2.5-coder:7b)
   Analyzing findings with local LLM

   AI:C  api.example.com → 4 findings
   AI:H  admin.example.com → 2 findings
   AI:H  dev.example.com → 3 findings
   AI:M  staging.example.com → 5 findings

   ✓ AI analysis complete: 14 findings across 4 subdomains

📋 AI SECURITY REPORT

## Executive Summary
Analysis identified 14 security findings across 4 subdomains, with 1 critical
and 2 high-severity issues requiring immediate attention. Key concerns include
hardcoded credentials and exposed development environments.

## Critical Findings

[CRITICAL] api.example.com:
  - Hardcoded Stripe API key in main.js (test key exposed)
  - Authentication bypass via admin parameter
  - React XSS vulnerability (CVE-2020-15168)
  CVEs:
    - React: CVE-2020-15168

[HIGH] admin.example.com:
  - Basic auth with default credentials detected
  - Directory listing enabled on /uploads/

[HIGH] dev.example.com:
  - Django debug mode enabled with stack traces
  - Source code exposure via .git directory
  - Database connection string in error messages

## Recommendations
1. IMMEDIATE: Remove hardcoded API keys and rotate credentials
2. IMMEDIATE: Disable debug mode in production environments
3. IMMEDIATE: Remove exposed .git directory
4. HIGH: Update React to latest stable version
5. HIGH: Implement proper authentication on admin panel
6. MEDIUM: Disable directory listing on sensitive paths
7. MEDIUM: Configure proper error handling to prevent information disclosure

🤖 Multi-Agent Examples

Example 6: Multi-Agent Deep Analysis

# Enable 8 specialized AI agents for comprehensive analysis
./god-eye -d target.com --enable-ai --multi-agent --no-brute

# Combine with active filter
./god-eye -d target.com --enable-ai --multi-agent --active

Multi-Agent Output

🤖 MULTI-AGENT ANALYSIS
──────────────────────────────────────────────────
  Routing findings to specialized AI agents...
  ✓ Multi-agent analysis complete: 4 critical, 34 high, 0 medium
  Agent usage:
    headers: 10 analyses (avg confidence: 50%)
    crypto: 17 analyses (avg confidence: 50%)
    xss: 3 analyses (avg confidence: 50%)
    api: 2 analyses (avg confidence: 50%)
    secrets: 3 analyses (avg confidence: 50%)
    !! Weak CSP directives: headers agent
    !! CORS allows all origins: headers agent
    ! Missing HSTS: headers agent
    ! Cookie without Secure flag: headers agent

Agent-Specific Analysis

Each agent provides domain-specific findings:

Agent Sample Finding
Headers Missing CSP, HSTS, X-Frame-Options, cookie flags
Secrets Hardcoded API keys, tokens, passwords in JS
XSS DOM sinks, innerHTML, unsafe event handlers
API CORS misconfiguration, rate limiting issues
Auth IDOR, session fixation, JWT problems
Crypto Weak TLS, expired certs, self-signed issues

🎭 Scenario-Based Examples

Scenario 1: Found a Suspicious Subdomain

# Initial scan found dev.target.com
# Let AI analyze it in detail

./god-eye -d target.com --enable-ai --ai-deep

# AI might find:
# - Debug mode enabled
# - Test credentials in source
# - Exposed API documentation
# - Missing security headers

Scenario 2: JavaScript Heavy Application

# SPA with lots of JavaScript
./god-eye -d webapp.com --enable-ai

# AI excels at:
# ✓ Analyzing minified/obfuscated code
# ✓ Finding hidden API endpoints
# ✓ Detecting auth bypass logic
# ✓ Identifying client-side security issues

Scenario 3: API-First Platform

# Multiple API subdomains
./god-eye -d api-platform.com --enable-ai --ai-deep

# AI will identify:
# ✓ API version mismatches
# ✓ Unprotected endpoints
# ✓ CORS issues
# ✓ Rate limiting problems

Scenario 4: Legacy Application

# Old PHP/WordPress site
./god-eye -d old-site.com --enable-ai

# AI checks for:
# ✓ Known CVEs in detected versions
# ✓ Common WordPress vulns
# ✓ Outdated library versions
# ✓ Exposed backup files

💡 Pro Tips

Tip 1: Combine with Other Tools

# God's Eye → Nuclei pipeline
./god-eye -d target.com --enable-ai --active -s | nuclei -t cves/

# God's Eye → httpx pipeline
./god-eye -d target.com --enable-ai -s | httpx -tech-detect

# God's Eye → Custom script
./god-eye -d target.com --enable-ai -o scan.json -f json
python analyze.py scan.json

Tip 2: Incremental Scans

# Day 1: Initial recon
./god-eye -d target.com --enable-ai -o day1.json -f json

# Day 2: Update scan
./god-eye -d target.com --enable-ai -o day2.json -f json

# Compare findings
diff <(jq '.[] | .subdomain' day1.json) <(jq '.[] | .subdomain' day2.json)

Tip 3: Filter by AI Severity

# Only show critical findings
./god-eye -d target.com --enable-ai -o scan.json -f json
cat scan.json | jq '.[] | select(.ai_severity == "critical")'

# Count findings by severity
cat scan.json | jq -r '.[] | .ai_severity' | sort | uniq -c

Tip 4: Custom Wordlist with AI

# AI can help identify naming patterns
# First run to learn patterns
./god-eye -d target.com --enable-ai --no-brute

# AI identifies pattern: api-v1, api-v2, api-v3
# Create custom wordlist:
echo -e "api-v4\napi-v5\napi-staging\napi-prod" > custom.txt

# Second run with custom wordlist
./god-eye -d target.com --enable-ai -w custom.txt

Tip 5: Monitoring Setup

#!/bin/bash
# monitor-target.sh - Daily AI-powered monitoring

TARGET="target.com"
DATE=$(date +%Y%m%d)
OUTPUT="scans/${TARGET}_${DATE}.json"

./god-eye -d $TARGET --enable-ai --active -o $OUTPUT -f json

# Alert on new critical findings
CRITICAL=$(cat $OUTPUT | jq '.[] | select(.ai_severity == "critical")' | wc -l)
if [ $CRITICAL -gt 0 ]; then
    echo "ALERT: $CRITICAL critical findings for $TARGET"
    cat $OUTPUT | jq '.[] | select(.ai_severity == "critical")'
fi

🧪 Testing AI Features

Test 1: Verify AI is Working

# Should show AI analysis section
./god-eye -d example.com --enable-ai --no-brute -v

# Look for:
# ✓ "🧠 AI-POWERED ANALYSIS"
# ✓ Model names in output
# ✓ AI findings if vulnerabilities detected

Test 2: Compare AI vs No-AI

# Without AI
time ./god-eye -d target.com --no-brute -o noai.json -f json

# With AI
time ./god-eye -d target.com --no-brute --enable-ai -o ai.json -f json

# Compare
echo "Findings without AI: $(cat noai.json | jq length)"
echo "Findings with AI: $(cat ai.json | jq length)"
echo "New AI findings: $(cat ai.json | jq '[.[] | select(.ai_findings != null)] | length')"

Test 3: Benchmark Different Modes

# Cascade (default)
time ./god-eye -d target.com --enable-ai --no-brute

# No cascade
time ./god-eye -d target.com --enable-ai --ai-cascade=false --no-brute

# Deep mode
time ./god-eye -d target.com --enable-ai --ai-deep --no-brute

📈 Performance Optimization

For Large Targets (>100 subdomains)

# Reduce concurrency to avoid overwhelming Ollama
./god-eye -d large-target.com --enable-ai -c 500

# Use fast model only (skip deep analysis)
./god-eye -d large-target.com --enable-ai --ai-cascade=false \
  --ai-deep-model deepseek-r1:1.5b

# Disable AI for initial enumeration, enable for interesting findings
./god-eye -d large-target.com --no-brute -s > subdomains.txt
cat subdomains.txt | head -20 | while read sub; do
    ./god-eye -d $sub --enable-ai --no-brute
done

For GPU Acceleration

# Ollama automatically uses GPU if available
# Check GPU usage:
nvidia-smi  # Linux/Windows with NVIDIA
ollama ps   # Should show GPU model

# With GPU, you can use larger models:
./god-eye -d target.com --enable-ai \
  --ai-deep-model deepseek-coder-v2:16b

🎓 Learning from AI Output

Example: Understanding AI Findings

Input: JavaScript code with potential issue

const API_KEY = "sk_live_51H...";
fetch(`/api/user/${userId}`);

AI Output:

AI:CRITICAL: Hardcoded production API key detected
             Unsanitized user input in URL parameter
             Missing authentication on API endpoint

What to Do:

  1. Verify the API key is active
  2. Test the userId parameter for injection
  3. Check if /api/user requires authentication
  4. Report to bug bounty program or client

Happy Hunting with AI! 🎯🧠