mirror of
https://github.com/Vyntral/god-eye.git
synced 2026-02-12 16:52:45 +00:00
- Implement 8 specialized AI agents (XSS, SQLi, Auth, API, Crypto, Secrets, Headers, General) - Add fast type-based routing for finding classification - Include OWASP-aligned knowledge bases per agent - Add agent handoff logic for cross-vulnerability detection - Optimize timeouts and parallelism for local LLM - Add new modules: cache, network, fingerprint, secrets, cloud, API, discovery - Update documentation with multi-agent feature
11 KiB
11 KiB
God's Eye - AI Integration Examples
🎯 Real-World Usage Examples
Example 1: Bug Bounty Recon
# Initial reconnaissance with AI analysis
./god-eye -d target.com --enable-ai -o recon.json -f json
# Filter high-severity AI findings
cat recon.json | jq '.[] | select(.ai_severity == "critical" or .ai_severity == "high")'
# Extract subdomains with CVEs
cat recon.json | jq '.[] | select(.cve_findings | length > 0)'
# Get AI-detected admin panels
cat recon.json | jq '.[] | select(.admin_panels | length > 0)'
Example 2: Pentesting Workflow
# Fast scan for initial scope
./god-eye -d client.com --enable-ai --no-brute --active
# Deep analysis on interesting findings
./god-eye -d client.com --enable-ai --ai-deep -c 500
# Generate report for client
./god-eye -d client.com --enable-ai -o client_report.txt
Example 3: Security Audit
# Comprehensive audit with all checks
./god-eye -d company.com --enable-ai
# Focus on specific issues
./god-eye -d company.com --enable-ai --active | grep -E "AI:CRITICAL|CVE"
# Export for further analysis
./god-eye -d company.com --enable-ai -o audit.csv -f csv
Example 4: Quick Triage
# Super fast scan (no brute-force, cascade enabled)
time ./god-eye -d target.com --enable-ai --no-brute
# Should complete in ~30-60 seconds for small targets
Example 5: Development Environment Check
# Find exposed dev/staging environments
./god-eye -d company.com --enable-ai | grep -E "dev|staging|test"
# AI will identify debug mode, error messages, etc.
📊 Expected Output Examples
Without AI
═══════════════════════════════════════════════════
● api.example.com [200] ⚡156ms
IP: 93.184.216.34
Tech: nginx, React
FOUND: Admin: /admin [200]
JS SECRET: api_key: "sk_test_123..."
═══════════════════════════════════════════════════
With AI Enabled
═══════════════════════════════════════════════════
● api.example.com [200] ⚡156ms
IP: 93.184.216.34
Tech: nginx, React
FOUND: Admin: /admin [200]
JS SECRET: api_key: "sk_test_123..."
AI:CRITICAL: Hardcoded Stripe test API key exposed in main.js
Authentication bypass possible via admin parameter
React version 16.8.0 has known XSS vulnerability
Missing rate limiting on /api/v1/users endpoint
(1 more findings...)
model: deepseek-r1:1.5b→qwen2.5-coder:7b
CVE: React: CVE-2020-15168 - XSS vulnerability in development mode
═══════════════════════════════════════════════════
AI Report Section
🧠 AI-POWERED ANALYSIS (cascade: deepseek-r1:1.5b + qwen2.5-coder:7b)
Analyzing findings with local LLM
AI:C api.example.com → 4 findings
AI:H admin.example.com → 2 findings
AI:H dev.example.com → 3 findings
AI:M staging.example.com → 5 findings
✓ AI analysis complete: 14 findings across 4 subdomains
📋 AI SECURITY REPORT
## Executive Summary
Analysis identified 14 security findings across 4 subdomains, with 1 critical
and 2 high-severity issues requiring immediate attention. Key concerns include
hardcoded credentials and exposed development environments.
## Critical Findings
[CRITICAL] api.example.com:
- Hardcoded Stripe API key in main.js (test key exposed)
- Authentication bypass via admin parameter
- React XSS vulnerability (CVE-2020-15168)
CVEs:
- React: CVE-2020-15168
[HIGH] admin.example.com:
- Basic auth with default credentials detected
- Directory listing enabled on /uploads/
[HIGH] dev.example.com:
- Django debug mode enabled with stack traces
- Source code exposure via .git directory
- Database connection string in error messages
## Recommendations
1. IMMEDIATE: Remove hardcoded API keys and rotate credentials
2. IMMEDIATE: Disable debug mode in production environments
3. IMMEDIATE: Remove exposed .git directory
4. HIGH: Update React to latest stable version
5. HIGH: Implement proper authentication on admin panel
6. MEDIUM: Disable directory listing on sensitive paths
7. MEDIUM: Configure proper error handling to prevent information disclosure
🤖 Multi-Agent Examples
Example 6: Multi-Agent Deep Analysis
# Enable 8 specialized AI agents for comprehensive analysis
./god-eye -d target.com --enable-ai --multi-agent --no-brute
# Combine with active filter
./god-eye -d target.com --enable-ai --multi-agent --active
Multi-Agent Output
🤖 MULTI-AGENT ANALYSIS
──────────────────────────────────────────────────
Routing findings to specialized AI agents...
✓ Multi-agent analysis complete: 4 critical, 34 high, 0 medium
Agent usage:
headers: 10 analyses (avg confidence: 50%)
crypto: 17 analyses (avg confidence: 50%)
xss: 3 analyses (avg confidence: 50%)
api: 2 analyses (avg confidence: 50%)
secrets: 3 analyses (avg confidence: 50%)
!! Weak CSP directives: headers agent
!! CORS allows all origins: headers agent
! Missing HSTS: headers agent
! Cookie without Secure flag: headers agent
Agent-Specific Analysis
Each agent provides domain-specific findings:
| Agent | Sample Finding |
|---|---|
| Headers | Missing CSP, HSTS, X-Frame-Options, cookie flags |
| Secrets | Hardcoded API keys, tokens, passwords in JS |
| XSS | DOM sinks, innerHTML, unsafe event handlers |
| API | CORS misconfiguration, rate limiting issues |
| Auth | IDOR, session fixation, JWT problems |
| Crypto | Weak TLS, expired certs, self-signed issues |
🎭 Scenario-Based Examples
Scenario 1: Found a Suspicious Subdomain
# Initial scan found dev.target.com
# Let AI analyze it in detail
./god-eye -d target.com --enable-ai --ai-deep
# AI might find:
# - Debug mode enabled
# - Test credentials in source
# - Exposed API documentation
# - Missing security headers
Scenario 2: JavaScript Heavy Application
# SPA with lots of JavaScript
./god-eye -d webapp.com --enable-ai
# AI excels at:
# ✓ Analyzing minified/obfuscated code
# ✓ Finding hidden API endpoints
# ✓ Detecting auth bypass logic
# ✓ Identifying client-side security issues
Scenario 3: API-First Platform
# Multiple API subdomains
./god-eye -d api-platform.com --enable-ai --ai-deep
# AI will identify:
# ✓ API version mismatches
# ✓ Unprotected endpoints
# ✓ CORS issues
# ✓ Rate limiting problems
Scenario 4: Legacy Application
# Old PHP/WordPress site
./god-eye -d old-site.com --enable-ai
# AI checks for:
# ✓ Known CVEs in detected versions
# ✓ Common WordPress vulns
# ✓ Outdated library versions
# ✓ Exposed backup files
💡 Pro Tips
Tip 1: Combine with Other Tools
# God's Eye → Nuclei pipeline
./god-eye -d target.com --enable-ai --active -s | nuclei -t cves/
# God's Eye → httpx pipeline
./god-eye -d target.com --enable-ai -s | httpx -tech-detect
# God's Eye → Custom script
./god-eye -d target.com --enable-ai -o scan.json -f json
python analyze.py scan.json
Tip 2: Incremental Scans
# Day 1: Initial recon
./god-eye -d target.com --enable-ai -o day1.json -f json
# Day 2: Update scan
./god-eye -d target.com --enable-ai -o day2.json -f json
# Compare findings
diff <(jq '.[] | .subdomain' day1.json) <(jq '.[] | .subdomain' day2.json)
Tip 3: Filter by AI Severity
# Only show critical findings
./god-eye -d target.com --enable-ai -o scan.json -f json
cat scan.json | jq '.[] | select(.ai_severity == "critical")'
# Count findings by severity
cat scan.json | jq -r '.[] | .ai_severity' | sort | uniq -c
Tip 4: Custom Wordlist with AI
# AI can help identify naming patterns
# First run to learn patterns
./god-eye -d target.com --enable-ai --no-brute
# AI identifies pattern: api-v1, api-v2, api-v3
# Create custom wordlist:
echo -e "api-v4\napi-v5\napi-staging\napi-prod" > custom.txt
# Second run with custom wordlist
./god-eye -d target.com --enable-ai -w custom.txt
Tip 5: Monitoring Setup
#!/bin/bash
# monitor-target.sh - Daily AI-powered monitoring
TARGET="target.com"
DATE=$(date +%Y%m%d)
OUTPUT="scans/${TARGET}_${DATE}.json"
./god-eye -d $TARGET --enable-ai --active -o $OUTPUT -f json
# Alert on new critical findings
CRITICAL=$(cat $OUTPUT | jq '.[] | select(.ai_severity == "critical")' | wc -l)
if [ $CRITICAL -gt 0 ]; then
echo "ALERT: $CRITICAL critical findings for $TARGET"
cat $OUTPUT | jq '.[] | select(.ai_severity == "critical")'
fi
🧪 Testing AI Features
Test 1: Verify AI is Working
# Should show AI analysis section
./god-eye -d example.com --enable-ai --no-brute -v
# Look for:
# ✓ "🧠 AI-POWERED ANALYSIS"
# ✓ Model names in output
# ✓ AI findings if vulnerabilities detected
Test 2: Compare AI vs No-AI
# Without AI
time ./god-eye -d target.com --no-brute -o noai.json -f json
# With AI
time ./god-eye -d target.com --no-brute --enable-ai -o ai.json -f json
# Compare
echo "Findings without AI: $(cat noai.json | jq length)"
echo "Findings with AI: $(cat ai.json | jq length)"
echo "New AI findings: $(cat ai.json | jq '[.[] | select(.ai_findings != null)] | length')"
Test 3: Benchmark Different Modes
# Cascade (default)
time ./god-eye -d target.com --enable-ai --no-brute
# No cascade
time ./god-eye -d target.com --enable-ai --ai-cascade=false --no-brute
# Deep mode
time ./god-eye -d target.com --enable-ai --ai-deep --no-brute
📈 Performance Optimization
For Large Targets (>100 subdomains)
# Reduce concurrency to avoid overwhelming Ollama
./god-eye -d large-target.com --enable-ai -c 500
# Use fast model only (skip deep analysis)
./god-eye -d large-target.com --enable-ai --ai-cascade=false \
--ai-deep-model deepseek-r1:1.5b
# Disable AI for initial enumeration, enable for interesting findings
./god-eye -d large-target.com --no-brute -s > subdomains.txt
cat subdomains.txt | head -20 | while read sub; do
./god-eye -d $sub --enable-ai --no-brute
done
For GPU Acceleration
# Ollama automatically uses GPU if available
# Check GPU usage:
nvidia-smi # Linux/Windows with NVIDIA
ollama ps # Should show GPU model
# With GPU, you can use larger models:
./god-eye -d target.com --enable-ai \
--ai-deep-model deepseek-coder-v2:16b
🎓 Learning from AI Output
Example: Understanding AI Findings
Input: JavaScript code with potential issue
const API_KEY = "sk_live_51H...";
fetch(`/api/user/${userId}`);
AI Output:
AI:CRITICAL: Hardcoded production API key detected
Unsanitized user input in URL parameter
Missing authentication on API endpoint
What to Do:
- Verify the API key is active
- Test the userId parameter for injection
- Check if /api/user requires authentication
- Report to bug bounty program or client
Happy Hunting with AI! 🎯🧠