replace RTree with RBush

This commit is contained in:
Vladimir Agafonkin
2013-07-21 17:20:14 +03:00
parent 5cc4d034b8
commit 454eecae8f
8 changed files with 535 additions and 744 deletions

View File

@@ -30,7 +30,7 @@ dist/iD.js: \
js/lib/jxon.js \
js/lib/lodash.js \
js/lib/osmauth.js \
js/lib/rtree.js \
js/lib/rbush.js \
js/lib/togeojson.js \
js/lib/marked.js \
js/id/start.js \

View File

@@ -29,7 +29,7 @@
<script src='js/lib/d3.value.js'></script>
<script src='js/lib/d3-compat.js'></script>
<script src='js/lib/bootstrap-tooltip.js'></script>
<script src='js/lib/rtree.js'></script>
<script src='js/lib/rbush.js'></script>
<script src='js/lib/togeojson.js'></script>
<script src='js/lib/marked.js'></script>

View File

@@ -1,26 +1,30 @@
iD.Tree = function(graph) {
var rtree = new RTree(),
var rtree = rbush(),
m = 1000 * 1000 * 100,
head = graph,
queuedCreated = [],
queuedModified = [],
rectangles = {},
x, y, dx, dy, rebased;
function extentRectangle(extent) {
x = m * extent[0][0],
y = m * extent[0][1],
dx = Math.max(m * extent[1][0] - x, 1),
dy = Math.max(m * extent[1][1] - y, 1);
return new RTree.Rectangle(~~x, ~~y, ~~dx, ~~dy);
return [
~~(m * extent[0][0]),
~~(m * extent[0][1]),
~~(m * extent[1][0]),
~~(m * extent[1][1])
];
}
function insert(entity) {
rtree.insert(extentRectangle(entity.extent(head)), entity.id);
var rect = rectangles[entity.id] = extentRectangle(entity.extent(head));
rect.id = entity.id;
rtree.insert(rect);
}
function remove(entity) {
rtree.remove(extentRectangle(entity.extent(graph)), entity.id);
rtree.remove(rectangles[entity.id]);
}
function reinsert(entity) {
@@ -79,8 +83,9 @@ iD.Tree = function(graph) {
rebased = false;
}
return rtree.search(extentRectangle(extent))
.map(function(id) { return graph.entity(id); });
return rtree.search(extentRectangle(extent)).map(function (rect) {
return graph.entities[rect.id];
});
},
graph: function() {

View File

@@ -233,15 +233,15 @@ iD.svg.Labels = function(projection, context) {
var mouse = context.mouse(),
pad = 50,
rect = new RTree.Rectangle(mouse[0] - pad, mouse[1] - pad, 2*pad, 2*pad),
ids = _.pluck(rtree.search(rect, this), 'leaf');
rect = [mouse[0] - pad, mouse[1] - pad, mouse[0] + pad, mouse[1] + pad],
ids = _.pluck(rtree.search(rect), 'id');
if (!ids.length) return;
layers.selectAll('.' + ids.join(', .'))
.classed('proximate', true);
}
var rtree = new RTree(),
var rtree = rbush(),
rectangles = {};
function labels(surface, graph, entities, filter, dimensions, fullRedraw) {
@@ -252,11 +252,11 @@ iD.svg.Labels = function(projection, context) {
for (i = 0; i < label_stack.length; i++) labelable.push([]);
if (fullRedraw) {
rtree = new RTree();
rtree.clear();
rectangles = {};
} else {
for (i = 0; i < entities.length; i++) {
rtree.remove(rectangles[entities[i].id], entities[i].id);
rtree.remove(rectangles[entities[i].id]);
}
}
@@ -325,7 +325,7 @@ iD.svg.Labels = function(projection, context) {
y: coord[1] + offset[1],
textAnchor: offset[2]
};
var rect = new RTree.Rectangle(p.x - m, p.y - m, width + 2*m, height + 2*m);
var rect = [p.x - m, p.y - m, p.x + width + m, p.y + height + m];
if (tryInsert(rect, entity.id)) return p;
}
@@ -342,12 +342,12 @@ iD.svg.Labels = function(projection, context) {
if (start < 0 || start + width > length) continue;
var sub = subpath(nodes, start, start + width),
rev = reverse(sub),
rect = new RTree.Rectangle(
Math.min(sub[0][0], sub[sub.length - 1][0]) - 10,
Math.min(sub[0][1], sub[sub.length - 1][1]) - 10,
Math.abs(sub[0][0] - sub[sub.length - 1][0]) + 20,
Math.abs(sub[0][1] - sub[sub.length - 1][1]) + 30
);
rect = [
Math.min(sub[0][0], sub[sub.length - 1][0]) - 10,
Math.min(sub[0][1], sub[sub.length - 1][1]) - 10,
Math.max(sub[0][0], sub[sub.length - 1][0]) + 20,
Math.max(sub[0][1], sub[sub.length - 1][1]) + 30
];
if (rev) sub = sub.reverse();
if (tryInsert(rect, entity.id)) return {
'font-size': height + 2,
@@ -379,9 +379,9 @@ iD.svg.Labels = function(projection, context) {
p.y = centroid[1] + textOffset;
p.textAnchor = 'middle';
p.height = height;
rect = new RTree.Rectangle(p.x - width/2, p.y, width, height + textOffset);
rect = [p.x - width/2, p.y, p.x + width/2, p.y + height + textOffset];
} else {
rect = new RTree.Rectangle(iconX, iconY, iconSize, iconSize);
rect = [iconX, iconY, iconX + iconSize, iconY + iconSize];
}
if (tryInsert(rect, entity.id)) return p;
@@ -390,11 +390,12 @@ iD.svg.Labels = function(projection, context) {
function tryInsert(rect, id) {
// Check that label is visible
if (rect.x1 < 0 || rect.y1 < 0 || rect.x2 > dimensions[0] ||
rect.y2 > dimensions[1]) return false;
var v = rtree.search(rect, true).length === 0;
if (rect[0] < 0 || rect[1] < 0 || rect[2] > dimensions[0] ||
rect[3] > dimensions[1]) return false;
var v = rtree.search(rect).length === 0;
if (v) {
rtree.insert(rect, id);
rect.id = id;
rtree.insert(rect);
rectangles[id] = rect;
}
return v;

496
js/lib/rbush.js Normal file
View File

@@ -0,0 +1,496 @@
/*
(c) 2013, Vladimir Agafonkin
RBush, a JavaScript library for high-performance 2D spatial indexing of points and rectangles.
https://github.com/mourner/rbush
*/
(function () { 'use strict';
function rbush(maxEntries, format) {
// jshint newcap: false, validthis: true
if (!(this instanceof rbush)) { return new rbush(maxEntries, format); }
this._maxEntries = Math.max(4, maxEntries || 9);
this._minEntries = Math.max(2, Math.ceil(this._maxEntries * 0.4));
this._initFormat(format);
this.clear();
}
rbush.prototype = {
search: function (bbox) {
var node = this.data,
result = [];
if (!this._intersects(bbox, node.bbox)) { return result; }
var nodesToSearch = [],
i, len, child, childBBox;
while (node) {
for (i = 0, len = node.children.length; i < len; i++) {
child = node.children[i];
childBBox = node.leaf ? this._toBBox(child) : child.bbox;
if (this._intersects(bbox, childBBox)) {
(node.leaf ? result : nodesToSearch).push(child);
}
}
node = nodesToSearch.pop();
}
return result;
},
load: function (data) {
if (!(data && data.length)) { return this; }
if (data.length < this._minEntries) {
for (var i = 0, len = data.length; i < len; i++) {
this.insert(data[i]);
}
return this;
}
// recursively build the tree with the given data from stratch using OMT algorithm
var node = this._build(data.slice(), 0);
this._calcBBoxes(node, true);
if (!this.data.children.length) {
// save as is if tree is empty
this.data = node;
} else if (this.data.height === node.height) {
// split root if trees have the same height
this._splitRoot(this.data, node);
} else {
if (this.data.height < node.height) {
// swap trees if inserted one is bigger
var tmpNode = this.data;
this.data = node;
node = tmpNode;
}
// insert the small tree into the large tree at appropriate level
this._insert(node, this.data.height - node.height - 1, true);
}
return this;
},
insert: function (item) {
if (item) {
this._insert(item, this.data.height - 1);
}
return this;
},
clear: function () {
this.data = {
children: [],
leaf: true,
bbox: this._infinite(),
height: 1
};
return this;
},
remove: function (item) {
if (!item) { return this; }
var node = this.data,
bbox = this._toBBox(item),
path = [],
indexes = [],
i, parent, index, goingUp;
// depth-first iterative tree traversal
while (node || path.length) {
if (!node) { // go up
node = path.pop();
parent = path[path.length - 1];
i = indexes.pop();
goingUp = true;
}
if (node.leaf) { // check current node
index = node.children.indexOf(item);
if (index !== -1) {
// item found, remove the item and condense tree upwards
node.children.splice(index, 1);
path.push(node);
this._condense(path);
return this;
}
}
if (!goingUp && !node.leaf && this._intersects(bbox, node.bbox)) { // go down
path.push(node);
indexes.push(i);
i = 0;
parent = node;
node = node.children[0];
} else if (parent) { // go right
i++;
node = parent.children[i];
goingUp = false;
} else { // nothing found
node = null;
}
}
return this;
},
toJSON: function () { return this.data; },
fromJSON: function (data) {
this.data = data;
return this;
},
_build: function (items, level, height) {
var N = items.length,
M = this._maxEntries;
if (N <= M) {
return {
children: items,
leaf: true,
height: 1
};
}
if (!level) {
// target height of the bulk-loaded tree
height = Math.ceil(Math.log(N) / Math.log(M));
// target number of root entries to maximize storage utilization
M = Math.ceil(N / Math.pow(M, height - 1));
items.sort(this._compareMinX);
}
// TODO eliminate recursion?
var node = {
children: [],
height: height
};
var N1 = Math.ceil(N / M) * Math.ceil(Math.sqrt(M)),
N2 = Math.ceil(N / M),
compare = level % 2 === 1 ? this._compareMinX : this._compareMinY,
i, j, slice, sliceLen, childNode;
// split the items into M mostly square tiles
for (i = 0; i < N; i += N1) {
slice = items.slice(i, i + N1).sort(compare);
for (j = 0, sliceLen = slice.length; j < sliceLen; j += N2) {
// pack each entry recursively
childNode = this._build(slice.slice(j, j + N2), level + 1, height - 1);
node.children.push(childNode);
}
}
return node;
},
_chooseSubtree: function (bbox, node, level, path) {
var i, len, child, targetNode, area, enlargement, minArea, minEnlargement;
while (true) {
path.push(node);
if (node.leaf || path.length - 1 === level) { break; }
minArea = minEnlargement = Infinity;
for (i = 0, len = node.children.length; i < len; i++) {
child = node.children[i];
area = this._area(child.bbox);
enlargement = this._enlargedArea(bbox, child.bbox) - area;
// choose entry with the least area enlargement
if (enlargement < minEnlargement) {
minEnlargement = enlargement;
minArea = area < minArea ? area : minArea;
targetNode = child;
} else if (enlargement === minEnlargement) {
// otherwise choose one with the smallest area
if (area < minArea) {
minArea = area;
targetNode = child;
}
}
}
node = targetNode;
}
return node;
},
_insert: function (item, level, isNode, root) {
var bbox = isNode ? item.bbox : this._toBBox(item),
insertPath = [];
// find the best node for accommodating the item, saving all nodes along the path too
var node = this._chooseSubtree(bbox, root || this.data, level, insertPath),
splitOccured;
// put the item into the node
node.children.push(item);
this._extend(node.bbox, bbox);
// split on node overflow; propagate upwards if necessary
do {
splitOccured = false;
if (insertPath[level].children.length > this._maxEntries) {
this._split(insertPath, level);
splitOccured = true;
level--;
}
} while (level >= 0 && splitOccured);
// adjust bboxes along the insertion path
this._adjustParentBBoxes(bbox, insertPath, level);
},
// split overflowed node into two
_split: function (insertPath, level) {
var node = insertPath[level],
M = node.children.length,
m = this._minEntries;
this._chooseSplitAxis(node, m, M);
var newNode = {
children: node.children.splice(this._chooseSplitIndex(node, m, M)),
height: node.height
};
if (node.leaf) {
newNode.leaf = true;
}
this._calcBBoxes(node);
this._calcBBoxes(newNode);
if (level) {
insertPath[level - 1].children.push(newNode);
} else {
this._splitRoot(node, newNode);
}
},
_splitRoot: function (node, newNode) {
// split root node
this.data = {};
this.data.children = [node, newNode];
this.data.height = node.height + 1;
this._calcBBoxes(this.data);
},
_chooseSplitIndex: function (node, m, M) {
var i, bbox1, bbox2, overlap, area, minOverlap, minArea, index;
minOverlap = minArea = Infinity;
for (i = m; i <= M - m; i++) {
bbox1 = this._distBBox(node, 0, i);
bbox2 = this._distBBox(node, i, M);
overlap = this._intersectionArea(bbox1, bbox2);
area = this._area(bbox1) + this._area(bbox2);
// choose distribution with minimum overlap
if (overlap < minOverlap) {
minOverlap = overlap;
index = i;
minArea = area < minArea ? area : minArea;
} else if (overlap === minOverlap) {
// otherwise choose distribution with minimum area
if (area < minArea) {
minArea = area;
index = i;
}
}
}
return index;
},
// sorts node children by the best axis for split
_chooseSplitAxis: function (node, m, M) {
var compareMinX = node.leaf ? this._compareMinX : this._compareNodeMinX,
compareMinY = node.leaf ? this._compareMinY : this._compareNodeMinY,
xMargin = this._allDistMargin(node, m, M, compareMinX),
yMargin = this._allDistMargin(node, m, M, compareMinY);
// if total distributions margin value is minimal for x, sort by minX,
// otherwise it's already sorted by minY
if (xMargin < yMargin) {
node.children.sort(compareMinX);
}
},
// total margin of all possible split distributions where each node is at least m full
_allDistMargin: function (node, m, M, compare) {
node.children.sort(compare);
var leftBBox = this._distBBox(node, 0, m),
rightBBox = this._distBBox(node, M - m, M),
margin = this._margin(leftBBox) + this._margin(rightBBox),
i, child;
for (i = m; i < M - m; i++) {
child = node.children[i];
this._extend(leftBBox, node.leaf ? this._toBBox(child) : child.bbox);
margin += this._margin(leftBBox);
}
for (i = M - m - 1; i >= 0; i--) {
child = node.children[i];
this._extend(rightBBox, node.leaf ? this._toBBox(child) : child.bbox);
margin += this._margin(rightBBox);
}
return margin;
},
// min bounding rectangle of node children from k to p-1
_distBBox: function (node, k, p) {
var bbox = this._infinite();
for (var i = k, child; i < p; i++) {
child = node.children[i];
this._extend(bbox, node.leaf ? this._toBBox(child) : child.bbox);
}
return bbox;
},
_calcBBoxes: function (node, recursive) {
// TODO eliminate recursion
node.bbox = this._infinite();
for (var i = 0, len = node.children.length, child; i < len; i++) {
child = node.children[i];
if (node.leaf) {
this._extend(node.bbox, this._toBBox(child));
} else {
if (recursive) {
this._calcBBoxes(child, recursive);
}
this._extend(node.bbox, child.bbox);
}
}
},
_adjustParentBBoxes: function (bbox, path, level) {
// adjust bboxes along the given tree path
for (var i = level; i >= 0; i--) {
this._extend(path[i].bbox, bbox);
}
},
_condense: function (path) {
// go through the path, removing empty nodes and updating bboxes
for (var i = path.length - 1, parent; i >= 0; i--) {
if (i > 0 && path[i].children.length === 0) {
parent = path[i - 1].children;
parent.splice(parent.indexOf(path[i]), 1);
} else {
this._calcBBoxes(path[i]);
}
}
},
_intersects: function (a, b) {
return b[0] <= a[2] &&
b[1] <= a[3] &&
b[2] >= a[0] &&
b[3] >= a[1];
},
_extend: function (a, b) {
a[0] = Math.min(a[0], b[0]);
a[1] = Math.min(a[1], b[1]);
a[2] = Math.max(a[2], b[2]);
a[3] = Math.max(a[3], b[3]);
return a;
},
_area: function (a) { return (a[2] - a[0]) * (a[3] - a[1]); },
_margin: function (a) { return (a[2] - a[0]) + (a[3] - a[1]); },
_enlargedArea: function (a, b) {
return (Math.max(b[2], a[2]) - Math.min(b[0], a[0])) *
(Math.max(b[3], a[3]) - Math.min(b[1], a[1]));
},
_intersectionArea: function (a, b) {
var minX = Math.max(a[0], b[0]),
minY = Math.max(a[1], b[1]),
maxX = Math.min(a[2], b[2]),
maxY = Math.min(a[3], b[3]);
return Math.max(0, maxX - minX) *
Math.max(0, maxY - minY);
},
_infinite: function () { return [Infinity, Infinity, -Infinity, -Infinity]; },
_compareNodeMinX: function (a, b) { return a.bbox[0] - b.bbox[0]; },
_compareNodeMinY: function (a, b) { return a.bbox[1] - b.bbox[1]; },
_initFormat: function (format) {
// data format (minX, minY, maxX, maxY accessors)
format = format || ['[0]', '[1]', '[2]', '[3]'];
// uses eval-type function compilation instead of just accepting a toBBox function
// because the algorithms are very sensitive to sorting functions performance,
// so they should be dead simple and without inner calls
// jshint evil: true
var compareArr = ['return a', ' - b', ';'];
this._compareMinX = new Function('a', 'b', compareArr.join(format[0]));
this._compareMinY = new Function('a', 'b', compareArr.join(format[1]));
this._toBBox = new Function('a', 'return [a' + format.join(', a') + '];');
}
};
if (typeof module !== 'undefined') {
module.exports = rbush;
} else {
window.rbush = rbush;
}
})();

View File

@@ -1,711 +0,0 @@
/******************************************************************************
rtree.js - General-Purpose Non-Recursive Javascript R-Tree Library
Version 0.6.2, December 5st 2009
@license Copyright (c) 2009 Jon-Carlos Rivera
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Jon-Carlos Rivera - imbcmdth@hotmail.com
******************************************************************************/
/**
* RTree - A simple r-tree structure for great results.
* @constructor
*/
var RTree = function(width){
// Variables to control tree-dimensions
var _Min_Width = 3; // Minimum width of any node before a merge
var _Max_Width = 6; // Maximum width of any node before a split
if(!isNaN(width)){ _Min_Width = Math.floor(width/2.0); _Max_Width = width;}
// Start with an empty root-tree
var _T = {x:0, y:0, w:0, h:0, id:"root", nodes:[] };
var isArray = function(o) {
return Object.prototype.toString.call(o) === '[object Array]';
};
/**@function
* @description Function to generate unique strings for element IDs
* @param {String} n The prefix to use for the IDs generated.
* @return {String} A guarenteed unique ID.
*/
var _name_to_id = (function() {
// hide our idCache inside this closure
var idCache = {};
// return the api: our function that returns a unique string with incrementing number appended to given idPrefix
return function(idPrefix) {
var idVal = 0;
if(idPrefix in idCache) {
idVal = idCache[idPrefix]++;
} else {
idCache[idPrefix] = 0;
}
return idPrefix + "_" + idVal;
}
})();
// This is my special addition to the world of r-trees
// every other (simple) method I found produced crap trees
// this skews insertions to prefering squarer and emptier nodes
RTree.Rectangle.squarified_ratio = function(l, w, fill) {
// Area of new enlarged rectangle
var lperi = (l + w) / 2.0; // Average size of a side of the new rectangle
var larea = l * w; // Area of new rectangle
// return the ratio of the perimeter to the area - the closer to 1 we are,
// the more "square" a rectangle is. conversly, when approaching zero the
// more elongated a rectangle is
var lgeo = larea / (lperi*lperi);
return(larea * fill / lgeo);
};
/**find the best specific node(s) for object to be deleted from
* [ leaf node parent ] = _remove_subtree(rectangle, object, root)
* @private
*/
var _remove_subtree = function(rect, obj, root) {
var hit_stack = []; // Contains the elements that overlap
var count_stack = []; // Contains the elements that overlap
var ret_array = [];
var current_depth = 1;
if(!rect || !RTree.Rectangle.overlap_rectangle(rect, root))
return ret_array;
var ret_obj = {x:rect.x, y:rect.y, w:rect.w, h:rect.h, target:obj};
count_stack.push(root.nodes.length);
hit_stack.push(root);
do {
var tree = hit_stack.pop();
var i = count_stack.pop()-1;
if("target" in ret_obj) { // We are searching for a target
while(i >= 0) {
var ltree = tree.nodes[i];
if(RTree.Rectangle.overlap_rectangle(ret_obj, ltree)) {
if( (ret_obj.target && "leaf" in ltree && ltree.leaf === ret_obj.target)
||(!ret_obj.target && ("leaf" in ltree || RTree.Rectangle.contains_rectangle(ltree, ret_obj)))) { // A Match !!
// Yup we found a match...
// we can cancel search and start walking up the list
if("nodes" in ltree) {// If we are deleting a node not a leaf...
ret_array = _search_subtree(ltree, true, [], ltree);
tree.nodes.splice(i, 1);
} else {
ret_array = tree.nodes.splice(i, 1);
}
// Resize MBR down...
RTree.Rectangle.make_MBR(tree.nodes, tree);
delete ret_obj.target;
if(tree.nodes.length < _Min_Width) { // Underflow
ret_obj.nodes = _search_subtree(tree, true, [], tree);
}
break;
}/* else if("load" in ltree) { // A load
}*/ else if("nodes" in ltree) { // Not a Leaf
current_depth += 1;
count_stack.push(i);
hit_stack.push(tree);
tree = ltree;
i = ltree.nodes.length;
}
}
i -= 1;
}
} else if("nodes" in ret_obj) { // We are unsplitting
tree.nodes.splice(i+1, 1); // Remove unsplit node
// ret_obj.nodes contains a list of elements removed from the tree so far
if(tree.nodes.length > 0)
RTree.Rectangle.make_MBR(tree.nodes, tree);
for(var t = 0;t<ret_obj.nodes.length;t++)
_insert_subtree(ret_obj.nodes[t], tree);
ret_obj.nodes.length = 0;
if(hit_stack.length == 0 && tree.nodes.length <= 1) { // Underflow..on root!
ret_obj.nodes = _search_subtree(tree, true, ret_obj.nodes, tree);
tree.nodes.length = 0;
hit_stack.push(tree);
count_stack.push(1);
} else if(hit_stack.length > 0 && tree.nodes.length < _Min_Width) { // Underflow..AGAIN!
ret_obj.nodes = _search_subtree(tree, true, ret_obj.nodes, tree);
tree.nodes.length = 0;
}else {
delete ret_obj.nodes; // Just start resizing
}
} else { // we are just resizing
RTree.Rectangle.make_MBR(tree.nodes, tree);
}
current_depth -= 1;
}while(hit_stack.length > 0);
return(ret_array);
};
/**choose the best damn node for rectangle to be inserted into
* [ leaf node parent ] = _choose_leaf_subtree(rectangle, root to start search at)
* @private
*/
var _choose_leaf_subtree = function(rect, root) {
var best_choice_index = -1;
var best_choice_stack = [];
var best_choice_area;
var load_callback = function(local_tree, local_node){
return(function(data) {
local_tree._attach_data(local_node, data);
});
};
best_choice_stack.push(root);
var nodes = root.nodes;
do {
if(best_choice_index != -1) {
best_choice_stack.push(nodes[best_choice_index]);
nodes = nodes[best_choice_index].nodes;
best_choice_index = -1;
}
for(var i = nodes.length-1; i >= 0; i--) {
var ltree = nodes[i];
if("leaf" in ltree) {
// Bail out of everything and start inserting
best_choice_index = -1;
break;
} /*else if(ltree.load) {
throw( "Can't insert into partially loaded tree ... yet!");
//jQuery.getJSON(ltree.load, load_callback(this, ltree));
//delete ltree.load;
}*/
// Area of new enlarged rectangle
var old_lratio = RTree.Rectangle.squarified_ratio(ltree.w, ltree.h, ltree.nodes.length+1);
// Enlarge rectangle to fit new rectangle
var nw = Math.max(ltree.x+ltree.w, rect.x+rect.w) - Math.min(ltree.x, rect.x);
var nh = Math.max(ltree.y+ltree.h, rect.y+rect.h) - Math.min(ltree.y, rect.y);
// Area of new enlarged rectangle
var lratio = RTree.Rectangle.squarified_ratio(nw, nh, ltree.nodes.length+2);
if(best_choice_index < 0 || Math.abs(lratio - old_lratio) < best_choice_area) {
best_choice_area = Math.abs(lratio - old_lratio); best_choice_index = i;
}
}
}while(best_choice_index != -1);
return(best_choice_stack);
};
/**split a set of nodes into two roughly equally-filled nodes
* [ an array of two new arrays of nodes ] = linear_split(array of nodes)
* @private
*/
var _linear_split = function(nodes) {
var n = _pick_linear(nodes);
while(nodes.length > 0) {
_pick_next(nodes, n[0], n[1]);
}
return(n);
};
/**insert the best source rectangle into the best fitting parent node: a or b
* [] = pick_next(array of source nodes, target node array a, target node array b)
* @private
*/
var _pick_next = function(nodes, a, b) {
// Area of new enlarged rectangle
var area_a = RTree.Rectangle.squarified_ratio(a.w, a.h, a.nodes.length+1);
var area_b = RTree.Rectangle.squarified_ratio(b.w, b.h, b.nodes.length+1);
var high_area_delta;
var high_area_node;
var lowest_growth_group;
for(var i = nodes.length-1; i>=0;i--) {
var l = nodes[i];
var new_area_a = {};
new_area_a.x = Math.min(a.x, l.x); new_area_a.y = Math.min(a.y, l.y);
new_area_a.w = Math.max(a.x+a.w, l.x+l.w) - new_area_a.x; new_area_a.h = Math.max(a.y+a.h, l.y+l.h) - new_area_a.y;
var change_new_area_a = Math.abs(RTree.Rectangle.squarified_ratio(new_area_a.w, new_area_a.h, a.nodes.length+2) - area_a);
var new_area_b = {};
new_area_b.x = Math.min(b.x, l.x); new_area_b.y = Math.min(b.y, l.y);
new_area_b.w = Math.max(b.x+b.w, l.x+l.w) - new_area_b.x; new_area_b.h = Math.max(b.y+b.h, l.y+l.h) - new_area_b.y;
var change_new_area_b = Math.abs(RTree.Rectangle.squarified_ratio(new_area_b.w, new_area_b.h, b.nodes.length+2) - area_b);
if( !high_area_node || !high_area_delta || Math.abs( change_new_area_b - change_new_area_a ) < high_area_delta ) {
high_area_node = i;
high_area_delta = Math.abs(change_new_area_b-change_new_area_a);
lowest_growth_group = change_new_area_b < change_new_area_a ? b : a;
}
}
var temp_node = nodes.splice(high_area_node, 1)[0];
if(a.nodes.length + nodes.length + 1 <= _Min_Width) {
a.nodes.push(temp_node);
RTree.Rectangle.expand_rectangle(a, temp_node);
} else if(b.nodes.length + nodes.length + 1 <= _Min_Width) {
b.nodes.push(temp_node);
RTree.Rectangle.expand_rectangle(b, temp_node);
}
else {
lowest_growth_group.nodes.push(temp_node);
RTree.Rectangle.expand_rectangle(lowest_growth_group, temp_node);
}
};
/**pick the "best" two starter nodes to use as seeds using the "linear" criteria
* [ an array of two new arrays of nodes ] = pick_linear(array of source nodes)
* @private
*/
var _pick_linear = function(nodes) {
var lowest_high_x = nodes.length-1;
var highest_low_x = 0;
var lowest_high_y = nodes.length-1;
var highest_low_y = 0;
var t1, t2;
for(var i = nodes.length-2; i>=0;i--) {
var l = nodes[i];
if(l.x > nodes[highest_low_x].x ) highest_low_x = i;
else if(l.x+l.w < nodes[lowest_high_x].x+nodes[lowest_high_x].w) lowest_high_x = i;
if(l.y > nodes[highest_low_y].y ) highest_low_y = i;
else if(l.y+l.h < nodes[lowest_high_y].y+nodes[lowest_high_y].h) lowest_high_y = i;
}
var dx = Math.abs((nodes[lowest_high_x].x+nodes[lowest_high_x].w) - nodes[highest_low_x].x);
var dy = Math.abs((nodes[lowest_high_y].y+nodes[lowest_high_y].h) - nodes[highest_low_y].y);
if( dx > dy ) {
if(lowest_high_x > highest_low_x) {
t1 = nodes.splice(lowest_high_x, 1)[0];
t2 = nodes.splice(highest_low_x, 1)[0];
} else {
t2 = nodes.splice(highest_low_x, 1)[0];
t1 = nodes.splice(lowest_high_x, 1)[0];
}
} else {
if(lowest_high_y > highest_low_y) {
t1 = nodes.splice(lowest_high_y, 1)[0];
t2 = nodes.splice(highest_low_y, 1)[0];
} else {
t2 = nodes.splice(highest_low_y, 1)[0];
t1 = nodes.splice(lowest_high_y, 1)[0];
}
}
return([{x:t1.x, y:t1.y, w:t1.w, h:t1.h, nodes:[t1]},
{x:t2.x, y:t2.y, w:t2.w, h:t2.h, nodes:[t2]} ]);
};
var _attach_data = function(node, more_tree){
node.nodes = more_tree.nodes;
node.x = more_tree.x; node.y = more_tree.y;
node.w = more_tree.w; node.h = more_tree.h;
return(node);
};
/**non-recursive internal search function
* [ nodes | objects ] = _search_subtree(rectangle, [return node data], [array to fill], root to begin search at)
* @private
*/
var _search_subtree = function(rect, return_node, return_array, root) {
var hit_stack = []; // Contains the elements that overlap
if(!RTree.Rectangle.overlap_rectangle(rect, root))
return(return_array);
var load_callback = function(local_tree, local_node){
return(function(data) {
local_tree._attach_data(local_node, data);
});
};
hit_stack.push(root.nodes);
do {
var nodes = hit_stack.pop();
for(var i = nodes.length-1; i >= 0; i--) {
var ltree = nodes[i];
if(RTree.Rectangle.overlap_rectangle(rect, ltree)) {
if("nodes" in ltree) { // Not a Leaf
hit_stack.push(ltree.nodes);
} else if("leaf" in ltree) { // A Leaf !!
if(!return_node)
return_array.push(ltree.leaf);
else
return_array.push(ltree);
}/* else if("load" in ltree) { // We need to fetch a URL for some more tree data
jQuery.getJSON(ltree.load, load_callback(this, ltree));
delete ltree.load;
// i++; // Replay this entry
}*/
}
}
}while(hit_stack.length > 0);
return(return_array);
};
/**non-recursive internal insert function
* [] = _insert_subtree(rectangle, object to insert, root to begin insertion at)
* @private
*/
var _insert_subtree = function(node, root) {
var bc; // Best Current node
// Initial insertion is special because we resize the Tree and we don't
// care about any overflow (seriously, how can the first object overflow?)
if(root.nodes.length == 0) {
root.x = node.x; root.y = node.y;
root.w = node.w; root.h = node.h;
root.nodes.push(node);
return;
}
// Find the best fitting leaf node
// choose_leaf returns an array of all tree levels (including root)
// that were traversed while trying to find the leaf
var tree_stack = _choose_leaf_subtree(node, root);
var ret_obj = node;//{x:rect.x,y:rect.y,w:rect.w,h:rect.h, leaf:obj};
// Walk back up the tree resizing and inserting as needed
do {
//handle the case of an empty node (from a split)
if(bc && "nodes" in bc && bc.nodes.length == 0) {
var pbc = bc; // Past bc
bc = tree_stack.pop();
for(var t=0;t<bc.nodes.length;t++)
if(bc.nodes[t] === pbc || bc.nodes[t].nodes.length == 0) {
bc.nodes.splice(t, 1);
break;
}
} else {
bc = tree_stack.pop();
}
// If there is data attached to this ret_obj
if("leaf" in ret_obj || "nodes" in ret_obj || isArray(ret_obj)) {
// Do Insert
if(isArray(ret_obj)) {
for(var ai = 0; ai < ret_obj.length; ai++) {
RTree.Rectangle.expand_rectangle(bc, ret_obj[ai]);
}
bc.nodes = bc.nodes.concat(ret_obj);
} else {
RTree.Rectangle.expand_rectangle(bc, ret_obj);
bc.nodes.push(ret_obj); // Do Insert
}
if(bc.nodes.length <= _Max_Width) { // Start Resizeing Up the Tree
ret_obj = {x:bc.x,y:bc.y,w:bc.w,h:bc.h};
} else { // Otherwise Split this Node
// linear_split() returns an array containing two new nodes
// formed from the split of the previous node's overflow
var a = _linear_split(bc.nodes);
ret_obj = a;//[1];
if(tree_stack.length < 1) { // If are splitting the root..
bc.nodes.push(a[0]);
tree_stack.push(bc); // Reconsider the root element
ret_obj = a[1];
} /*else {
delete bc;
}*/
}
} else { // Otherwise Do Resize
//Just keep applying the new bounding rectangle to the parents..
RTree.Rectangle.expand_rectangle(bc, ret_obj);
ret_obj = {x:bc.x,y:bc.y,w:bc.w,h:bc.h};
}
} while(tree_stack.length > 0);
};
/**quick 'n' dirty function for plugins or manually drawing the tree
* [ tree ] = RTree.get_tree(): returns the raw tree data. useful for adding
* @public
* !! DEPRECATED !!
*/
this.get_tree = function() {
return _T;
};
/**quick 'n' dirty function for plugins or manually loading the tree
* [ tree ] = RTree.set_tree(sub-tree, where to attach): returns the raw tree data. useful for adding
* @public
* !! DEPRECATED !!
*/
this.set_tree = function(new_tree, where) {
if(!where)
where = _T;
return(_attach_data(where, new_tree));
};
/**non-recursive search function
* [ nodes | objects ] = RTree.search(rectangle, [return node data], [array to fill])
* @public
*/
this.search = function(rect, return_node, return_array) {
if(arguments.length < 1)
throw "Wrong number of arguments. RT.Search requires at least a bounding rectangle."
switch(arguments.length) {
case 1:
arguments[1] = false;// Add an "return node" flag - may be removed in future
case 2:
arguments[2] = []; // Add an empty array to contain results
case 3:
arguments[3] = _T; // Add root node to end of argument list
default:
arguments.length = 4;
}
return(_search_subtree.apply(this, arguments));
};
/**partially-recursive toJSON function
* [ string ] = RTree.toJSON([rectangle], [tree])
* @public
*/
this.toJSON = function(rect, tree) {
var hit_stack = []; // Contains the elements that overlap
var count_stack = []; // Contains the elements that overlap
var return_stack = {}; // Contains the elements that overlap
var max_depth = 3; // This triggers recursion and tree-splitting
var current_depth = 1;
var return_string = "";
if(rect && !RTree.Rectangle.overlap_rectangle(rect, _T))
return "";
if(!tree) {
count_stack.push(_T.nodes.length);
hit_stack.push(_T.nodes);
return_string += "var main_tree = {x:"+_T.x.toFixed()+",y:"+_T.y.toFixed()+",w:"+_T.w.toFixed()+",h:"+_T.h.toFixed()+",nodes:[";
} else {
max_depth += 4;
count_stack.push(tree.nodes.length);
hit_stack.push(tree.nodes);
return_string += "var main_tree = {x:"+tree.x.toFixed()+",y:"+tree.y.toFixed()+",w:"+tree.w.toFixed()+",h:"+tree.h.toFixed()+",nodes:[";
}
do {
var nodes = hit_stack.pop();
var i = count_stack.pop()-1;
if(i >= 0 && i < nodes.length-1)
return_string += ",";
while(i >= 0) {
var ltree = nodes[i];
if(!rect || RTree.Rectangle.overlap_rectangle(rect, ltree)) {
if(ltree.nodes) { // Not a Leaf
if(current_depth >= max_depth) {
var len = return_stack.length;
var nam = _name_to_id("saved_subtree");
return_string += "{x:"+ltree.x.toFixed()+",y:"+ltree.y.toFixed()+",w:"+ltree.w.toFixed()+",h:"+ltree.h.toFixed()+",load:'"+nam+".js'}";
return_stack[nam] = this.toJSON(rect, ltree);
if(i > 0)
return_string += ","
} else {
return_string += "{x:"+ltree.x.toFixed()+",y:"+ltree.y.toFixed()+",w:"+ltree.w.toFixed()+",h:"+ltree.h.toFixed()+",nodes:[";
current_depth += 1;
count_stack.push(i);
hit_stack.push(nodes);
nodes = ltree.nodes;
i = ltree.nodes.length;
}
} else if(ltree.leaf) { // A Leaf !!
var data = ltree.leaf.toJSON ? ltree.leaf.toJSON() : JSON.stringify(ltree.leaf);
return_string += "{x:"+ltree.x.toFixed()+",y:"+ltree.y.toFixed()+",w:"+ltree.w.toFixed()+",h:"+ltree.h.toFixed()+",leaf:" + data + "}";
if(i > 0)
return_string += ","
} else if(ltree.load) { // A load
return_string += "{x:"+ltree.x.toFixed()+",y:"+ltree.y.toFixed()+",w:"+ltree.w.toFixed()+",h:"+ltree.h.toFixed()+",load:'" + ltree.load + "'}";
if(i > 0)
return_string += ","
}
}
i -= 1;
}
if(i < 0) {
return_string += "]}"; current_depth -= 1;
}
}while(hit_stack.length > 0);
return_string+=";";
for(var my_key in return_stack) {
return_string += "\nvar " + my_key + " = function(){" + return_stack[my_key] + " return(main_tree);};";
}
return(return_string);
};
/**non-recursive function that deletes a specific
* [ number ] = RTree.remove(rectangle, obj)
*/
this.remove = function(rect, obj) {
if(arguments.length < 1)
throw "Wrong number of arguments. RT.remove requires at least a bounding rectangle."
switch(arguments.length) {
case 1:
arguments[1] = false; // obj == false for conditionals
case 2:
arguments[2] = _T; // Add root node to end of argument list
default:
arguments.length = 3;
}
if(arguments[1] === false) { // Do area-wide delete
var numberdeleted = 0;
var ret_array = [];
do {
numberdeleted=ret_array.length;
ret_array = ret_array.concat(_remove_subtree.apply(this, arguments));
}while( numberdeleted != ret_array.length);
return ret_array;
}
else { // Delete a specific item
return(_remove_subtree.apply(this, arguments));
}
};
/**non-recursive insert function
* [] = RTree.insert(rectangle, object to insert)
*/
this.insert = function(rect, obj) {
/* if(arguments.length < 2)
throw "Wrong number of arguments. RT.Insert requires at least a bounding rectangle and an object."*/
return(_insert_subtree({x:rect.x,y:rect.y,w:rect.w,h:rect.h,leaf:obj}, _T));
};
/**non-recursive delete function
* [deleted object] = RTree.remove(rectangle, [object to delete])
*/
//End of RTree
};
/**Rectangle - Generic rectangle object - Not yet used */
RTree.Rectangle = function(ix, iy, iw, ih) { // new Rectangle(bounds) or new Rectangle(x, y, w, h)
var x, x2, y, y2, w, h;
if(ix.x) {
x = ix.x; y = ix.y;
if(ix.w !== 0 && !ix.w && ix.x2){
w = ix.x2-ix.x; h = ix.y2-ix.y;
} else {
w = ix.w; h = ix.h;
}
x2 = x + w; y2 = y + h; // For extra fastitude
} else {
x = ix; y = iy; w = iw; h = ih;
x2 = x + w; y2 = y + h; // For extra fastitude
}
this.x1 = this.x = x;
this.y1 = this.y = y;
this.x2 = x2;
this.y2 = y2;
this.w = w;
this.h = h;
this.toJSON = function() {
return('{"x":'+x.toString()+', "y":'+y.toString()+', "w":'+w.toString()+', "h":'+h.toString()+'}');
};
this.overlap = function(a) {
return(this.x() < a.x2() && this.x2() > a.x() && this.y() < a.y2() && this.y2() > a.y());
};
this.expand = function(a) {
var nx = Math.min(this.x(), a.x());
var ny = Math.min(this.y(), a.y());
w = Math.max(this.x2(), a.x2()) - nx;
h = Math.max(this.y2(), a.y2()) - ny;
x = nx; y = ny;
return(this);
};
this.setRect = function(ix, iy, iw, ih) {
var x, x2, y, y2, w, h;
if(ix.x) {
x = ix.x; y = ix.y;
if(ix.w !== 0 && !ix.w && ix.x2) {
w = ix.x2-ix.x; h = ix.y2-ix.y;
} else {
w = ix.w; h = ix.h;
}
x2 = x + w; y2 = y + h; // For extra fastitude
} else {
x = ix; y = iy; w = iw; h = ih;
x2 = x + w; y2 = y + h; // For extra fastitude
}
};
//End of RTree.Rectangle
};
/**returns true if rectangle 1 overlaps rectangle 2
* [ boolean ] = overlap_rectangle(rectangle a, rectangle b)
* @static function
*/
RTree.Rectangle.overlap_rectangle = function(a, b) {
return(a.x < (b.x+b.w) && (a.x+a.w) > b.x && a.y < (b.y+b.h) && (a.y+a.h) > b.y);
};
/**returns true if rectangle a is contained in rectangle b
* [ boolean ] = contains_rectangle(rectangle a, rectangle b)
* @static function
*/
RTree.Rectangle.contains_rectangle = function(a, b) {
return((a.x+a.w) <= (b.x+b.w) && a.x >= b.x && (a.y+a.h) <= (b.y+b.h) && a.y >= b.y);
};
/**expands rectangle A to include rectangle B, rectangle B is untouched
* [ rectangle a ] = expand_rectangle(rectangle a, rectangle b)
* @static function
*/
RTree.Rectangle.expand_rectangle = function(a, b) {
var nx = Math.min(a.x, b.x);
var ny = Math.min(a.y, b.y);
a.w = Math.max(a.x+a.w, b.x+b.w) - nx;
a.h = Math.max(a.y+a.h, b.y+b.h) - ny;
a.x = nx; a.y = ny;
return(a);
};
/**generates a minimally bounding rectangle for all rectangles in
* array "nodes". If rect is set, it is modified into the MBR. Otherwise,
* a new rectangle is generated and returned.
* [ rectangle a ] = make_MBR(rectangle array nodes, rectangle rect)
* @static function
*/
RTree.Rectangle.make_MBR = function(nodes, rect) {
if(nodes.length < 1)
return({x:0, y:0, w:0, h:0});
//throw "make_MBR: nodes must contain at least one rectangle!";
if(!rect)
rect = {x:nodes[0].x, y:nodes[0].y, w:nodes[0].w, h:nodes[0].h};
else
rect.x = nodes[0].x; rect.y = nodes[0].y; rect.w = nodes[0].w; rect.h = nodes[0].h;
for(var i = nodes.length-1; i>0; i--)
RTree.Rectangle.expand_rectangle(rect, nodes[i]);
return(rect);
};

View File

@@ -31,7 +31,7 @@
<script src='../js/lib/d3.value.js'></script>
<script src='../js/lib/d3-compat.js'></script>
<script src='../js/lib/bootstrap-tooltip.js'></script>
<script src='../js/lib/rtree.js'></script>
<script src='../js/lib/rbush.js'></script>
<script src='../js/lib/togeojson.js'></script>
<script src='../js/lib/osmauth.js'></script>

View File

@@ -32,7 +32,7 @@ describe("iD.Tree", function() {
expect(tree.intersects(iD.geo.Extent([0, 0], [1, 1]), g)).to.eql([]);
var node = iD.Node({id: 'n', loc: [0.5, 0.5]});
g = tree.graph().replace(node);
expect(tree.intersects(iD.geo.Extent([0, 0], [1, 1]), g)).to.eql([way, node]);
expect(tree.intersects(iD.geo.Extent([0, 0], [1, 1]), g)).to.eql([node, way]);
});
it("includes entities that used to have missing children, after rebase added them", function() {
@@ -43,7 +43,7 @@ describe("iD.Tree", function() {
var node = iD.Node({id: 'n', loc: [0.5, 0.5]});
base.rebase({ 'n': node });
tree.rebase(['n']);
expect(tree.intersects(iD.geo.Extent([0, 0], [1, 1]), g)).to.eql([way, node]);
expect(tree.intersects(iD.geo.Extent([0, 0], [1, 1]), g)).to.eql([node, way]);
});
it("includes entities within extent, excludes those without", function() {