remove unused files, imports

This commit is contained in:
Adam Wilson
2025-05-21 14:00:19 -06:00
parent 7960d225c6
commit ff429365ac
5 changed files with 25 additions and 106 deletions

View File

@@ -1,48 +0,0 @@
#!/bin/bash
# Get the directory of the script
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
# Navigate to the project root (2 levels up from .github/workflows)
PROJECT_ROOT="$(cd "$SCRIPT_DIR/../.." && pwd)"
# Move to the project root
cd "$PROJECT_ROOT"
# Start Flask server in the background
python -m src.api.controller &
SERVER_PID=$!
# Function to check if server is up
wait_for_server() {
echo "Waiting for Flask server to start..."
local max_attempts=100
local attempt=0
while [ $attempt -lt $max_attempts ]; do
if curl -s http://localhost:9998/ > /dev/null 2>&1; then
echo "Server is up!"
return 0
fi
attempt=$((attempt + 1))
echo "Attempt $attempt/$max_attempts - Server not ready yet, waiting..."
sleep 1
done
echo "Server failed to start after $max_attempts attempts"
kill $SERVER_PID
return 1
}
# Wait for server to be ready
wait_for_server || exit 1
# Make the actual request once server is ready
echo "Making API request..."
curl -X POST -i http://localhost:9998/api/conversations \
-d '{ "prompt": "describe a random planet in our solar system in 10 words or less" }' \
-H "Content-Type: application/json" || exit 1
echo
exit 0

View File

@@ -1,26 +0,0 @@
import logging
from flask import Flask, jsonify, request
from waitress import serve
from src.llm.llm import Phi3LanguageModel
from src.llm.llm_rag import Phi3LanguageModelWithRag
app = Flask(__name__)
@app.route('/', methods=['GET'])
def health_check():
return f"Server is running\n", 200
@app.route('/api/conversations', methods=['POST'])
def get_llm_response():
prompt = request.json['prompt']
service = Phi3LanguageModel()
response = service.invoke(user_input=prompt)
return jsonify({'response': response}), 201
if __name__ == '__main__':
logger = logging.Logger(name='Flask API', level=logging.DEBUG)
print('test')
logger.debug('running...')
# TODO set up port # as env var
serve(app, host='0.0.0.0', port=9999)

View File

@@ -1,5 +1,4 @@
import json
import time
import traceback

View File

@@ -1,35 +1,35 @@
"""
Usage:
$ uvicorn src.api.http_api:app --host 0.0.0.0 --port 9999
"""
# """
# Usage:
# $ uvicorn src.api.http_api:app --host 0.0.0.0 --port 9999
# """
from fastapi import FastAPI
from pathlib import Path
from pydantic import BaseModel
from src.llm.llm import Phi3LanguageModel
# from fastapi import FastAPI
# from pathlib import Path
# from pydantic import BaseModel
# from src.llm.llm import Phi3LanguageModel
STATIC_PATH = Path(__file__).parent.absolute() / 'static'
# STATIC_PATH = Path(__file__).parent.absolute() / 'static'
app = FastAPI(
title='Phi-3 Language Model API',
description='HTTP API for interacting with Phi-3 Mini 4K language model'
)
# app = FastAPI(
# title='Phi-3 Language Model API',
# description='HTTP API for interacting with Phi-3 Mini 4K language model'
# )
class LanguageModelPrompt(BaseModel):
prompt: str
# class LanguageModelPrompt(BaseModel):
# prompt: str
class LanguageModelResponse(BaseModel):
response: str
# class LanguageModelResponse(BaseModel):
# response: str
@app.get('/', response_model=str)
async def health_check():
return 'success'
# @app.get('/', response_model=str)
# async def health_check():
# return 'success'
@app.post('/api/conversations', response_model=LanguageModelResponse)
async def get_llm_conversation_response(request: LanguageModelPrompt):
service = Phi3LanguageModel()
response = service.invoke(user_input=request.prompt)
return LanguageModelResponse(response=response)
# @app.post('/api/conversations', response_model=LanguageModelResponse)
# async def get_llm_conversation_response(request: LanguageModelPrompt):
# service = Phi3LanguageModel()
# response = service.invoke(user_input=request.prompt)
# return LanguageModelResponse(response=response)

View File

@@ -5,16 +5,10 @@ RAG implementation with local Phi-3-mini-4k-instruct-onnx and embeddings
import logging
import os
import sys
from typing import List
# LangChain imports
from langchain_huggingface import HuggingFacePipeline
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.schema import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough